Regulation of Surface Defect Chemistry toward Stable Ni-Rich Cathodes

被引:64
作者
Wang, Liguang [1 ,2 ]
Lei, Xincheng [3 ]
Liu, Tongchao [4 ]
Dai, Alvin [4 ]
Su, Dong [3 ]
Amine, Khalil [4 ,5 ]
Lu, Jun [4 ]
Wu, Tianpin [1 ]
机构
[1] Argonne Natl Lab, Adv Photon Sources, Xray Sci Div, Lemont, IL 60439 USA
[2] Univ Windsor, Dept Chem & Biochem, Windsor, ON N9B 3P4, Canada
[3] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys Inst Phys, Beijing 100190, Peoples R China
[4] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[5] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
关键词
defect chemistry; layered oxides; lithium-ion batteries; Ni-rich cathodes; surface modification; LAYERED OXIDE CATHODES; HIGH-ENERGY; PERSPECTIVE;
D O I
10.1002/adma.202200744
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface reconstruction of Ni-rich layered oxides (NLO) degrades the cycling stability and safety of high-energy-density lithium-ion batteries (LIBs), which challenges typical surface-modification approaches to build a robust interface with electrochemical activity. Here, a strategy of leveraging the low-strain analogues of Li- and Mn-rich layered oxides (LMR) to reconstruct a stable surface on the Ni-rich layered cathodes is proposed. The new surface structure not only consists of a gradient chemical composition but also contains a defect-rich structure regarding the formation of oxygen vacancies and cationic ordering, which can simultaneously facilitate lithium diffusion and stabilize the crystal structure during the (de)lithiation. These features in the NLO lead to a dramatic improvement in electrochemical properties, especially the cyclability under high voltage cycling, exhibiting the 30% increase in capacity retention after 200 cycles at the current density of 1 C (3.0-4.6 V). The findings offer a facile and effective way to regulate defect chemistry and surface structure in parallel on Ni-rich layered structure cathodes to achieve high-energy density LIBs.
引用
收藏
页数:8
相关论文
共 39 条
[1]   Study of the local structure of LiNi0.33+δMn0.33+δCo0.33-2δO2 (0.025 ≤ δ ≤ 0.075) oxides [J].
Ben-Kamel, K. ;
Amdouni, N. ;
Mauger, A. ;
Julien, C. M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 528 :91-98
[2]   Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries [J].
Chen, Bozhou ;
Zhao, Bangchuan ;
Zhou, Jiafeng ;
Fang, Zhitang ;
Huang, Yanan ;
Zhu, Xuebin ;
Sun, Yuping .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (06) :994-1002
[3]   Phase Transformation Behavior and Stability of LiNiO2 Cathode Material for Li-Ion Batteries Obtained from InSitu Gas Analysis and Operando X-Ray Diffraction [J].
de Biasi, Lea ;
Schiele, Alexander ;
Roca-Ayats, Maria ;
Garcia, Grecia ;
Brezesinski, Torsten ;
Hartmann, Pascal ;
Janek, Juergen .
CHEMSUSCHEM, 2019, 12 (10) :2240-2250
[4]   The role of metal substitutions in the development of Li batteries, part I: cathodes [J].
Hebert, Alex ;
McCalla, Eric .
MATERIALS ADVANCES, 2021, 2 (11) :3474-3518
[5]   Fundamental Linkage Between Structure, Electrochemical Properties, and Chemical Compositions of LiNi1-x-yMnxCoyO2 Cathode Materials [J].
Hu, Jiangtao ;
Wang, Qinchao ;
Wu, Bingbin ;
Tan, Sha ;
Shadike, Zulipiya ;
Bi, Yujing ;
Whittingham, M. Stanley ;
Xiao, Jie ;
Yang, Xiao-Qing ;
Hu, Enyuan .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (02) :2622-2629
[6]   Fabrication and interfacial characterization of Ni-rich thin-film cathodes for stable Li-ion batteries [J].
Jiang, Ming ;
Wu, Xiaochao ;
Zhang, Qian ;
Danilov, Dmitri L. ;
Eichel, Rudiger-A ;
Notten, Peter H. L. .
ELECTROCHIMICA ACTA, 2021, 398 (398)
[7]   Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries [J].
Kim, U. -H. ;
Jun, D. -W. ;
Park, K. -J. ;
Zhang, Q. ;
Kaghazchi, P. ;
Aurbach, D. ;
Major, D. T. ;
Goobes, G. ;
Dixit, M. ;
Leifer, N. ;
Wang, C. M. ;
Yan, P. ;
Ahn, D. ;
Kim, K. -H. ;
Yoon, C. S. ;
Sun, Y. -K. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (05) :1271-1279
[8]   Microstructure Engineered Ni-Rich Layered Cathode for Electric Vehicle Batteries [J].
Kim, Un-Hyuck ;
Park, Jeong-Hyeon ;
Aishova, Assylzat ;
Ribas, Rogerio M. ;
Monteiro, Robson S. ;
Griffith, Kent J. ;
Yoon, Chong S. ;
Sun, Yang-Kook .
ADVANCED ENERGY MATERIALS, 2021, 11 (25)
[9]   A new design of highly reversible LiNiO2: Defect formation in transition metal site [J].
Kobayashi, Yo ;
Tabuchi, Mitsuharu ;
Miyashiro, Hajime ;
Kuriyama, Nobuhiro .
JOURNAL OF POWER SOURCES, 2017, 364 :156-162
[10]   A perspective on single-crystal layered oxide cathodes for lithium-ion batteries [J].
Langdon, Jayse ;
Manthiram, Arumugam .
ENERGY STORAGE MATERIALS, 2021, 37 :143-160