Pointwise Convergence of Marcinkiewicz-Fejer Means of Double Vilenkin-Fourier Series

被引:0
作者
Goginava, U. [1 ]
机构
[1] I Javakhishvili Tbilisi State Univ, Tbilisi, Georgia
来源
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES | 2017年 / 52卷 / 05期
基金
美国国家科学基金会;
关键词
Vilenkin function; Pointwise summability; Marcinkiewicz-Fejer mean; Lebesgue point; SUMMABILITY;
D O I
10.3103/S1068362317050041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a characterization of points at which the Marcinkiewicz-Fejer means of double Vilenkin-Fourier series converge.
引用
收藏
页码:242 / 253
页数:12
相关论文
共 26 条
[1]  
Agaev G.N., 1981, Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups
[2]  
[Anonymous], 2002, TRIGONOMETRIC SERIES
[3]  
Butzer P.L., 1971, Fourier analysis and approximation
[4]   Marcinkiewicz-Fejer means of double Vilenkin-Fourier series [J].
Coginava, Ushangi .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2007, 44 (01) :97-115
[5]   Wiener amalgams and pointwise summability of Fourier transforms and Fourier series [J].
Feichtinger, Hans G. ;
Weisz, Ferenc .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 140 :509-536
[7]   Almost everywhere strong summability of double Walsh-Fourier series [J].
Gat, G. ;
Goginava, U. .
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2015, 50 (01) :1-13
[8]  
GAT G, 2004, GEORGIAN MATH J, V11, P467
[9]   Almost everywhere strong summability of Marcinkiewicz means of double Walsh-Fourier series [J].
Gat, Gyoergy ;
Goginava, Ushangi ;
Karagulyan, Grigori .
ANALYSIS MATHEMATICA, 2014, 40 (04) :243-266
[10]   The weak type inequality for the Walsh system [J].
Goginava, Ushangi .
STUDIA MATHEMATICA, 2008, 185 (01) :35-48