Supersymmetric explanation of the muon g-2 anomaly with and without stable neutralino

被引:14
作者
Chakraborti, Manimala [1 ]
Iwamoto, Sho [2 ]
Kim, Jong Soo [3 ]
Maselek, Rafal [4 ]
Sakurai, Kazuki [4 ]
机构
[1] Polish Acad Sci, Nicolaus Copernicus Astron Ctr, Astrocent, Ul Rektorska 4, PL-00614 Warsaw, Poland
[2] Eotvos Lorand Univ, Inst Theoret Phys, Pazmany Peter Setany 1-A, H-1117 Budapest, Hungary
[3] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa
[4] Univ Warsaw, Fac Phys, Inst Theoret Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
关键词
Supersymmetry; Electroweak Precision Physics; MAGNETIC-MOMENT; FLAVOR VIOLATION; BREAKING; SUPERGRAVITY; PHYSICS; SEARCH; MICROMEGAS; MODEL; MASS;
D O I
10.1007/JHEP08(2022)124
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper we explore the possibility of explaining the muon g - 2 anomaly in various types of supersymmetric extensions of the Standard Model. In particular, we investigate and compare the phenomenological constraints in the MSSM with stable neutralino and the other types of scenarios where the neutralino is unstable. For the latter case we study the Gauge Mediated SUSY Breaking (GMSB) scenario with very light grayitino and the UDD-type R-Parity Violating (RPV) scenario. In the MSSM with stable neutralino, the parameter region favoured by the (g - 2)(mu), is strongly constrained by the neutralino relic abundance and the dark matter direct detection experiments, as well as by the LHC searches in the lepton plus missing transverse energy channel. On the other hand, the scenarios without stable neutralino are free from the dark matter constraints, while the LHC constraints depends strongly on the decay of the neutralino. We find that in GMSB the entire parameter region favoured by the muon g -2 is already excluded if the Next Lightest SUSY Particle (NLSP) is the neutralino. In the GMSB scenario with a stau NSLP and in the RPV scenario, LHC constraints are weaker than the stable neutralino case and a larger region of parameter space is available to fit the (g - 2)(mu), anomaly.
引用
收藏
页数:46
相关论文
共 143 条
[71]   DELPHES 3: a modular framework for fast simulation of a generic collider experiment [J].
de Favereau, J. ;
Delaere, C. ;
Demi, P. ;
Giammanco, A. ;
Lemaitre, V. ;
Mertens, A. ;
Selvaggi, M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (02)
[72]   The pMSSM10 after LHC run 1 [J].
de Vries, K. J. ;
Bagnaschi, E. A. ;
Buchmueller, O. ;
Cavanaugh, R. ;
Citron, M. ;
De Roeck, A. ;
Dolan, M. J. ;
Ellis, J. R. ;
Flaecher, H. ;
Heinemeyer, S. ;
Isidori, G. ;
Malik, S. ;
Marrouche, J. ;
Martinez Santos, D. ;
Olive, K. A. ;
Sakurai, K. ;
Weiglein, G. .
EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (09)
[73]   CheckMATE 2: From the model to the limit [J].
Dercks, Daniel ;
Desai, Nishita ;
Kim, Jong Soo ;
Rolbiecki, Krzysztof ;
Tattersall, Jamie ;
Weber, Torsten .
COMPUTER PHYSICS COMMUNICATIONS, 2017, 221 :383-418
[74]   Explanation of the muon g-2 anomaly with vectorlike leptons and its implications for Higgs decays [J].
Dermisek, Radovan ;
Raval, Aditi .
PHYSICAL REVIEW D, 2013, 88 (01)
[75]   Supersymmetry and generic BSM models in PYTHIA 8 [J].
Desai, Nishita ;
Skands, Peter Z. .
EUROPEAN PHYSICAL JOURNAL C, 2012, 72 (12) :1-13
[76]   LOW-ENERGY DYNAMICAL SUPERSYMMETRY BREAKING SIMPLIFIED [J].
DINE, M ;
NELSON, AE ;
SHIRMAN, Y .
PHYSICAL REVIEW D, 1995, 51 (03) :1362-1370
[77]   New tools for low energy dynamical supersymmetry breaking [J].
Dine, M ;
Nelson, AE ;
Nir, Y ;
Shirman, Y .
PHYSICAL REVIEW D, 1996, 53 (05) :2658-2669
[78]   DYNAMICAL SUPERSYMMETRY BREAKING AT LOW ENERGIES [J].
DINE, M ;
NELSON, AE .
PHYSICAL REVIEW D, 1993, 48 (03) :1277-1287
[79]   Updating bounds on R-parity violating supersymmetry from meson oscillation data [J].
Domingo, Florian ;
Dreiner, Herbert K. ;
Kim, Jong Soo ;
Krauss, Manuel E. ;
Lozano, Victor Martin ;
Wang, Zeren Simon .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (02)
[80]   CheckMATE: Confronting your favourite new physics model with LHC data [J].
Drees, Manuel ;
Dreiner, Herbert K. ;
Kim, Jong Soo ;
Schmeier, Daniel ;
Tattersall, Jamie .
COMPUTER PHYSICS COMMUNICATIONS, 2015, 187 :227-265