Collaborative weighted multi-view feature extraction

被引:11
|
作者
Zhang, Jinxin [1 ]
Zhang, Peng [2 ]
Liu, Liming [3 ]
Deng, Naiyang [2 ]
Jing, Ling [2 ]
机构
[1] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
[2] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
[3] Capital Univ Econ & Business, Sch Stat, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view; Feature extraction; Local collaborative representative; Jensen Shannon divergence; CANONICAL CORRELATION-ANALYSIS; REPRESENTATION; REDUCTION; SPARSE;
D O I
10.1016/j.engappai.2020.103527
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most of the current multi-view feature extraction methods mainly consider the consistency and complementary information between multi-view samples, therefore have some drawbacks. They ignore the manifold structure of the single-view itself, and also ignore the differences among the similarities between any two views when the number of views is greater than two, because of assigning the same weight to them. In this paper, we propose a novel multi-view feature extraction method termed as collaborative weighted multi-view feature extraction or CWMvFE. Here the local collaborative representative (LCR) method is utilized to preserve the local correlation in between-view and within-view respectively. Furthermore, it realizes that less similar view pairs should share more consistency and complementary information, where Jensen Shannon divergence is used to reflect the similarity between different view pairs. Therefore, the proposed CWMvFE not only preserves the local correlation in multi-view, including local correlation in both between-view and within-view, but also explores the differences in similarities between different view pairs. Experiments on four image datasets demonstrate that CWMvFE has better performance than other related methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Adaptive Weighted Multi-View Clustering
    Liu, Shuo Shuo
    Lin, Lin
    CONFERENCE ON HEALTH, INFERENCE, AND LEARNING, VOL 209, 2023, 209 : 19 - 36
  • [32] Evidential Weighted Multi-view Clustering
    Zhou, Kuang
    Guo, Mei
    Jiang, Ming
    BELIEF FUNCTIONS: THEORY AND APPLICATIONS (BELIEF 2021), 2021, 12915 : 22 - 32
  • [33] MULTI-VIEW COLLABORATIVE REPRESENTATION CLASSIFICATION
    Tao, Yingshan
    Yuan, Haoliang
    Lai, Chun Sing
    Lai, Loi Lei
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2019, : 240 - 245
  • [34] Multi-View Collaborative Network Embedding
    Ata, Sezin Kircali
    Fang, Yuan
    Wu, Min
    Shi, Jiaqi
    Kwoh, Chee Keong
    Li, Xiaoli
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (03)
  • [35] Joint Multi-View Collaborative Clustering
    Khalafaoui, Yasser
    Matei, Basarab
    Grozavu, Nistor
    Lovisetto, Martino
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [36] Collaborative PLSA for Multi-View Clustering
    Jiang, Yu
    Liu, Jing
    Li, Zechao
    Lu, Hanqing
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2997 - 3000
  • [37] Multi-View Feature Engineering and Learning
    Dong, Jingming
    Karianakis, Nikolaos
    Davis, Damek
    Hernandez, Joshua
    Balzer, Jonathan
    Soatto, Stefano
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 3251 - 3260
  • [38] Multi-view Recognition Using Weighted View Selection
    Spurlock, Scott
    Wu, Hui
    Souvenir, Richard
    COMPUTER VISION - ACCV 2014, PT IV, 2015, 9006 : 538 - 552
  • [39] Robust Multi-View Feature Selection
    Liu, Hongfu
    Mao, Haiyi
    Fu, Yun
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 281 - 290
  • [40] Similarity-sequenced multi-view discriminant feature extraction for image recognition
    Su, Shuzhi
    Zhang, Kaiyu
    Zhu, Yanmin
    Zhang, Maoyan
    Jiang, Shexiang
    JOURNAL OF MODERN OPTICS, 2023, 70 (08) : 503 - 516