A comparative study of numerical solutions of a class of KdV equation

被引:15
作者
Khattak, A. J. [1 ]
Siraj-ul-Islam [2 ]
机构
[1] GIK Inst Engn Sci & Technol, Topi, Pakistan
[2] Univ Engn & Technol, Peshawar, Pakistan
关键词
Korteweg-de Vries equation; radial basis functions; multiquadric; Gaussian; collocation method; solitons;
D O I
10.1016/j.amc.2007.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we present a comparative study of meshless method, modified Bernstein polynomials (BP) and B-Spline finite element method (BS-FEM) for the numerical solution of two different models of Korteweg-de Vries (KdV) equation. The multiquadric (MQ) and Gaussian (GA) Radial basis functions (RBFs) are used due to exponential convergence rate. Excellent agreement is found between exact and RBFs solutions and same accuracy is obtained as Bernstein polynomials and B-Spline finite element method. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:425 / 434
页数:10
相关论文
共 16 条
[1]   Numerical solution of Korteweg-de Vries equation by Galerkin B-spline finite element method [J].
Aksan, EN ;
Özdes, A .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (02) :1256-1265
[2]   Numerical solution of KdV equation using modified Bernstein polynomials [J].
Bhatta, DD ;
Bhatti, MI .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 174 (02) :1255-1268
[3]   THE PARAMETER R2 IN MULTIQUADRIC INTERPOLATION [J].
CARLSON, RE ;
FOLEY, TA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (09) :29-42
[4]  
DEBNATH L, 2005, NONLINEAR PARTIAL DI
[5]   NUMERICAL AND THEORETICAL-STUDY OF CERTAIN NON-LINEAR WAVE PHENOMENA [J].
FORNBERG, B ;
WHITHAM, GB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1361) :373-404
[6]   KORTEWEG-DEVRIES EQUATION AND GENERALIZATIONS .6. METHODS FOR EXACT SOLUTION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (01) :97-133
[7]  
Gardner G.A., 1989, ISNME 89, V2, P565
[8]  
Gardner L.R.T., 1988, P INT C MOD SIM, V1, P81
[9]   STABILITY OF SOME FINITE-DIFFERENCE SCHEMES FOR KORTEWEG-DEVRIES EQUATION [J].
GODA, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1975, 39 (01) :229-236
[10]   EXACT ENVELOPE-SOLITON SOLUTIONS OF A NONLINEAR WAVE-EQUATION [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :805-809