A MODEL FOR ANNEALING-INDUCED HARDENING IN ULTRAFINE-GRAINED METALS

被引:0
作者
Sheinerman, A. G. [1 ]
Krasnitckii, S. A. [2 ,3 ]
机构
[1] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
[2] Peter Great St Petersburg Polytech Univ, St Petersburg 195251, Russia
[3] ITMO Univ, Kronverkskiy Pr 49, St Petersburg 197101, Russia
来源
MATERIALS PHYSICS AND MECHANICS | 2021年 / 47卷 / 04期
关键词
ultrafine-grained materials; hardening; annealing; grain boundaries; PLASTIC-DEFORMATION; AL; DUCTILITY; BEHAVIOR; STRAIN;
D O I
10.18149/MPM.4742021_8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We suggest a model, which describes the effect of grain boundary relaxation on the annealing-induced hardening in ultrafine-grained metals. Within the model, grain boundary relaxation during annealing is accompanied by a decrease in the number of grain boundary dislocation sources. The exhaustion of easily activated grain boundary dislocation sources results in the activation of harder grain boundary dislocation sources and/or repetitive action of the same dislocation sources. This gives rise to an increase in the strain hardening rate that can lead to an increase in the ultimate strength of ultrafine-grained solids. The results of the model agree with available experimental data.
引用
收藏
页码:608 / 612
页数:5
相关论文
共 18 条
[1]   Strength and structure in commercial purity aluminium after large strain [J].
Bowen, J. R. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 483-84 :231-234
[2]   Structure-property optimization of ultrafine-grained dual-phase steels using a micro structure-based strain hardening model [J].
Delince, M. ;
Brechet, Y. ;
Embury, J. D. ;
Geers, M. G. D. ;
Jacques, P. J. ;
Pardoen, T. .
ACTA MATERIALIA, 2007, 55 (07) :2337-2350
[3]   Microstructural evolution during the heat treatment of nanocrystalline alloys [J].
Detor, A. J. ;
Schuh, C. A. .
JOURNAL OF MATERIALS RESEARCH, 2007, 22 (11) :3233-3248
[4]   Unusual hardening behaviour in heavily cryo-rolled Cu-Al-Zn alloys during annealing treatment [J].
Gong, Y. L. ;
Ren, S. Y. ;
Zeng, S. D. ;
Zhu, X. K. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 659 :165-171
[5]   Annealing-Induced Hardening in Ultrafine-Grained and Nanocrystalline Materials [J].
Gubicza, Jeno .
ADVANCED ENGINEERING MATERIALS, 2020, 22 (01)
[6]   Annealing-Induced Hardening in Ultrafine-Grained Ni-Mo Alloys [J].
Gubicza, Jeno ;
Pereira, Pedro Henrique R. ;
Kapoor, Garima ;
Huang, Yi ;
Vadlamani, Subramanya Sarma ;
Langdon, Terence G. .
ADVANCED ENGINEERING MATERIALS, 2018, 20 (09)
[7]   METALLURGY Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J].
Hu, J. ;
Shi, Y. N. ;
Sauvage, X. ;
Sha, G. ;
Lu, K. .
SCIENCE, 2017, 355 (6331) :1292-+
[8]   Hardening by annealing and softening by deformation in nanostructured metals [J].
Huang, XX ;
Hansen, N ;
Tsuji, N .
SCIENCE, 2006, 312 (5771) :249-251
[9]   Suppression of the annealing-induced hardening effect in ultrafine-grained Al at low temperatures [J].
Orlova, T. S. ;
Mavlyutov, A. M. ;
Gutkin, M. Yu. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802
[10]   HARDENING BY ANNEALING AND IMPLEMENTATION OF HIGH DUCTILITY OF ULTRA-FINE GRAINED ALUMINUM: EXPERIMENT AND THEORY [J].
Orlova, T. S. ;
Skiba, N. V. ;
Mavlyutov, A. M. ;
Murashkin, M. Yu. ;
Valiev, R. Z. ;
Gutkin, M. Yu. .
REVIEWS ON ADVANCED MATERIALS SCIENCE, 2018, 57 (02) :224-240