An efficient method to reduce the numerical dispersion in the ADI-FDTD

被引:53
作者
Zheng, HX [1 ]
Leung, KW [1 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
关键词
alternate-direction-implicit (ADI) method; artificial anisotropic parameters; finite-difference time-domain (FDTD) technique; numerical dispersion; phase velocity error;
D O I
10.1109/TMTT.2005.850441
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new approach to reduce the numerical dispersion in the finite-difference time-domain (FDTD) method with alternating-direction implicit (ADI) is studied. By adding anisotropic parameters into the ADI-FDTD formulas, the error of the numerical phase velocity can be controlled, causing the numerical dispersion to decrease significantly. The numerical stability and dispersion relation are discussed in this paper. Numerical experiments are given to substantiate the proposed method.
引用
收藏
页码:2295 / 2301
页数:7
相关论文
共 17 条
[1]  
Balanis C. A., 1989, Advanced engineering electromagnetics
[2]   Investigation on the characteristics of the envelope FDTD based on the alternating direction implicit scheme [J].
Ju, S ;
Jung, KY ;
Kim, H .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2003, 13 (09) :414-416
[3]   Reduction of numerical dispersion in FDTD method through artificial anisotropy [J].
Juntunen, JS ;
Tsiboukis, TD .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2000, 48 (04) :582-588
[4]   A new FDTD algorithm based on alternating-direction implicit method [J].
Namiki, T .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1999, 47 (10) :2003-2007
[5]   3-D ADI-FDTD method - Unconditionally stable time-domain algorithm for solving full vector Maxwell's equations [J].
Namiki, T .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2000, 48 (10) :1743-1748
[6]   Analysis and Numerical Experiments on the Numerical Dispersion of Two-Dimensional ADI-FDTD [J].
Sun, Guilin ;
Trueman, Christopher W. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2003, 2 :78-81
[7]  
SUN MK, 2003, IEEE APS INT S DIG, V1, P352
[8]  
Taflove A., 1995, Computational Electrodynamics: the Finite-Difference Time-Domain Method
[9]  
Von Neumann John., 1932, MATH FDN QUANTUM MEC
[10]  
YEE KS, 1966, IEEE T ANTENN PROPAG, VAP14, P302