Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries

被引:82
作者
Guo, Yubing [1 ,2 ]
Zhang, Jiachen [1 ,3 ]
Hu, Wenqi [1 ]
Khan, Muhammad Turab Ali [1 ]
Sitti, Metin [1 ,4 ,5 ,6 ]
机构
[1] Max Planck Inst Intelligent Syst, Phys Intelligence Dept, D-70569 Stuttgart, Germany
[2] Beijing Inst Technol, Inst Engn Med, Beijing 100081, Peoples R China
[3] City Univ Hong Kong, Dept Biomed Engn, Hong Kong, Peoples R China
[4] Swiss Fed Inst Technol, Inst Biomed Engn, CH-8092 Zurich, Switzerland
[5] Koc Univ, Sch Med, TR-34450 Istanbul, Turkey
[6] Koc Univ, Coll Engn, TR-34450 Istanbul, Turkey
基金
欧洲研究理事会;
关键词
POLYMER NETWORKS; HIGH-RESOLUTION; 3D;
D O I
10.1038/s41467-021-26136-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pre-patterning director fields into liquid crystal elastomers enables programmed morphing upon actuation. Guo et al. realize 3D skeletal assemblies with previously non-achievable director fields and morphing modes. Liquid crystal elastomers exhibit large reversible strain and programmable shape transformations, enabling various applications in soft robotics, dynamic optics, and programmable origami and kirigami. The morphing modes of these materials depend on both their geometries and director fields. In two dimensions, a pixel-by-pixel design has been accomplished to attain more flexibility over the spatial resolution of the liquid crystal response. Here we generalize this idea in two steps. First, we create independent, cubic light-responsive voxels, each with a predefined director field orientation. Second, these voxels are in turn assembled to form lines, grids, or skeletal structures that would be rather difficult to obtain from an initially connected material sample. In this way, the orientation of the director fields can be made to vary at voxel resolution to allow for programmable optically- or thermally-triggered anisotropic or heterogeneous material responses and morphology changes in three dimensions that would be impossible or hard to implement otherwise.
引用
收藏
页数:9
相关论文
共 48 条
[1]   Robotic microassembly and micromanipulation at FEMTO-ST [J].
Agnus J. ;
Chaillet N. ;
Clévy C. ;
Dembélé S. ;
Gauthier M. ;
Haddab Y. ;
Laurent G. ;
Lutz P. ;
Piat N. ;
Rabenorosoa K. ;
Rakotondrabe M. ;
Tamadazte B. .
Lutz, P. (philippe.lutz@femto-st.fr), 1600, Springer Verlag (08) :91-106
[2]   Universal inverse design of surfaces with thin nematic elastomer sheets [J].
Aharoni, Hillel ;
Xia, Yu ;
Zhang, Xinyue ;
Kamien, Randall D. ;
Yang, Shu .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (28) :7206-7211
[3]   Four-dimensional Printing of Liquid Crystal Elastomers [J].
Ambulo, Cedric P. ;
Burroughs, Julia J. ;
Boothby, Jennifer M. ;
Kim, Hyun ;
Shankar, M. Ravi ;
Ware, Taylor H. .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (42) :37332-37339
[4]   3 DIMENSIONALLY ORDERED POLYMER NETWORKS WITH A HELICOIDAL STRUCTURE [J].
BROER, DJ ;
HEYNDERICKX, I .
MACROMOLECULES, 1990, 23 (09) :2474-2477
[5]   Visual-Based Automation of Peg-in-Hole Microassembly Process [J].
Chang, R. J. ;
Lin, C. Y. ;
Lin, P. S. .
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2011, 133 (04)
[6]   Programming Tilting Angles in Shape Memory Polymer Janus Pillar Arrays with Unidirectional Wetting against the Tilting Direction [J].
Chen, Chi-Mon ;
Chiang, Chang-Lung ;
Yang, Shu .
LANGMUIR, 2015, 31 (35) :9523-9526
[7]   Biomedical applications of soft robotics [J].
Cianchetti, Matteo ;
Laschi, Cecilia ;
Menciassi, Arianna ;
Dario, Paolo .
NATURE REVIEWS MATERIALS, 2018, 3 (06) :143-153
[8]   Note: Automated maskless micro-multidomain photoalignment [J].
Culbreath, Christopher ;
Glazar, Nikolaus ;
Yokoyama, Hiroshi .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (12)
[9]   A flexible microrobot-based microassembly station [J].
Fatikow, S ;
Seyfried, J ;
Fahlbusch, S ;
Buerkle, A ;
Schmoeckel, F .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2000, 27 (1-2) :135-169
[10]  
FINKELMANN H, 1981, MAKROMOL CHEM-RAPID, V2, P317