Two approximation methods are used to obtain the Bayes estimate for the renewal function of inverse Gaussian renewal process. Both approximations use a gamma-type conditional prior for the location parameter, a non-informative marginal prior for the shape parameter, and a squared error loss function. Simulations compare the accuracy of the estimators and indicate that the Tieney and Kadane (T-K)-based estimator out performs Maximum Likelihood (ML)- and Lindley (L)-based estimator. Computations for the T-K-based Bayes estimate employ the generalized Newton's method as well as a recent modified Newton's method with cubic convergence to maximize modified likelihood functions. The program is available from the author.
机构:
Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Anesthesia & Crit Care, Boston, MA 02114 USA
MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USAHarvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Anesthesia & Crit Care, Boston, MA 02114 USA
Barbieri, Riccardo
Brown, Emery N.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Anesthesia & Crit Care, Boston, MA 02114 USA
MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USAHarvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Anesthesia & Crit Care, Boston, MA 02114 USA
机构:
Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Anesthesia & Crit Care, Boston, MA 02114 USA
MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USAHarvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Anesthesia & Crit Care, Boston, MA 02114 USA
Barbieri, Riccardo
Brown, Emery N.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Anesthesia & Crit Care, Boston, MA 02114 USA
MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USAHarvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Anesthesia & Crit Care, Boston, MA 02114 USA