Developing an early-warning system for spotting at-risk students by using eBook interaction logs

被引:59
作者
Akcapinar, Gokhan [1 ,2 ]
Hasnine, Mohammad Nehal [1 ]
Majumdar, Rwitajit [1 ]
Flanagan, Brendan [1 ]
Ogata, Hiroaki [1 ]
机构
[1] Kyoto Univ, Acad Ctr Comp & Media Studies, Kyoto, Japan
[2] Hacettepe Univ, Dept Comp Educ & Instruct Technol, Ankara, Turkey
关键词
Early-warning systems; At-risk students; Educational data mining; Learning analytics; Academic performance prediction; ONLINE; PERFORMANCE; PREDICTION; MODELS;
D O I
10.1186/s40561-019-0083-4
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Early prediction systems have already been applied successfully in various educational contexts. In this study, we investigated developing an early prediction system in the context of eBook-based teaching-learning and used students' eBook reading data to develop an early warning system for students at-risk of academic failure -students whose academic performance is low. To determine the best performing model and optimum time for possible interventions we created prediction models by using 13 prediction algorithms with the data from different weeks of the course. We also tested effects of data transformation on prediction models. 10-fold cross-validation was used for all prediction models. Accuracy and Kappa metrics were used to compare the performance of the models. Our results revealed that in a sixteen-week long course all models reached their highest performance with the data from the 15th week. On the other hand, starting from the 3rd week, the models classified low and high performing students with an accuracy of over 79%. In terms of algorithms, Random Forest (RF) outperformed other algorithms when raw data were used, however, with the transformed data J48 algorithm performed better. When categorical data were used, Naive Bayes (NB) outperformed other algorithms. Results also indicated that models with transformed data performed lower than the models created using categorical data. However, models with categorical data showed similar performance with models with raw data. The implications of the results presented in this research were also discussed with respect to the field of Learning Analytics.
引用
收藏
页数:15
相关论文
共 26 条
[1]  
Arnold K. E., 2012, P 2 INT C LEARN AN K, P267, DOI [10.1145/2330601.2330666, DOI 10.1145/2330601.2330666]
[2]  
Baker R.S., 2015, Proceedings of the 8th International Conference on Educational Data Mining, P150
[3]   Dropout early warning systems for high school students using machine learning [J].
Chung, Jae Young ;
Lee, Sunbok .
CHILDREN AND YOUTH SERVICES REVIEW, 2019, 96 :346-353
[4]   Evaluating the effectiveness of educational data mining techniques for early prediction of students' academic failure in introductory programming courses [J].
Costa, Evandro B. ;
Fonseca, Baldoino ;
Santana, Marcelo Almeida ;
de Araujo, Fabrisia Ferreira ;
Rego, Joilson .
COMPUTERS IN HUMAN BEHAVIOR, 2017, 73 :247-256
[5]   E-textbooks at what cost? Performance and use of electronic v. print texts [J].
Daniel, David B. ;
Woody, William Douglas .
COMPUTERS & EDUCATION, 2013, 62 :18-23
[6]  
Flanagan B., 2017, 25 INT C COMP ED AS, P333
[7]  
Hahsler Michael, 2023, CRAN
[8]  
He JZ, 2015, AAAI CONF ARTIF INTE, P1749
[9]   Contrasting prediction methods for early warning systems at undergraduate level [J].
Howard, Emma ;
Meehan, Maria ;
Parnell, Andrew .
INTERNET AND HIGHER EDUCATION, 2018, 37 :66-75
[10]   Developing early warning systems to predict students' online learning performance [J].
Hu, Ya-Han ;
Lo, Chia-Lun ;
Shih, Sheng-Pao .
COMPUTERS IN HUMAN BEHAVIOR, 2014, 36 :469-478