Quantum Linear Scalar Fields with Time Dependent Potentials: Overview and Applications to Cosmology

被引:6
作者
Cortez, Jeronimo [1 ]
Mena Marugan, Guillermo A. [2 ]
Velhinho, Jose [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Fis, Mexico City 04510, DF, Mexico
[2] CSIC, IEM, Serrano 121, Madrid 28006, Spain
[3] Univ Beira Interior, Fac Ciencias, R Marques DAvila & Bolama, P-6201001 Covilha, Portugal
关键词
quantum fields in curved spacetimes; quantum cosmology; Fock quantization; quantum fields in nonstationary settings; uniqueness criteria; unitarity in cosmological backgrounds; PARTICLE CREATION; QUANTIZED-FIELDS; STATES; SPACE; CATASTROPHES; UNIQUENESS; HARMONICS; EVOLUTION; DYNAMICS; MODELS;
D O I
10.3390/math8010115
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we present an overview of uniqueness results derived in recent years for the quantization of Gowdy cosmological models and for (test) Klein-Gordon fields minimally coupled to Friedmann-Lemaitre-Robertson-Walker, de Sitter, and Bianchi I spacetimes. These results are attained by imposing the criteria of symmetry invariance and of unitary implementability of the dynamics. This powerful combination of criteria allows not only to address the ambiguity in the representation of the canonical commutation relations, but also to single out a preferred set of fundamental variables. For the sake of clarity and completeness in the presentation (essentially as a background and complementary material), we first review the classical and quantum theories of a scalar field in globally hyperbolic spacetimes. Special emphasis is made on complex structures and the unitary implementability of symplectic transformations.
引用
收藏
页数:49
相关论文
共 110 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]   Planck 2013 results. XVI. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Armitage-Caplan, C. ;
Arnaud, M. ;
Ashdown, M. ;
Atrio-Barandela, F. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bobin, J. ;
Bock, J. J. ;
Bonaldi, A. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Bridges, M. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cappellini, B. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chen, X. ;
Chiang, H. C. ;
Chiang, L. -Y ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. .
ASTRONOMY & ASTROPHYSICS, 2014, 571
[3]   Unitarity and ultraviolet regularity in cosmology [J].
Agullo, Ivan ;
Ashtekar, Abhay .
PHYSICAL REVIEW D, 2015, 91 (12)
[4]   MASSLESS MINIMALLY COUPLED SCALAR FIELD IN DE SITTER SPACE [J].
ALLEN, B ;
FOLACCI, A .
PHYSICAL REVIEW D, 1987, 35 (12) :3771-3778
[5]   VACUUM STATES IN DE-SITTER SPACE [J].
ALLEN, B .
PHYSICAL REVIEW D, 1985, 32 (12) :3136-3149
[6]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[7]   A CURIOSITY CONCERNING THE ROLE OF COHERENT STATES IN QUANTUM FIELD-THEORY [J].
ASHTEKAR, A ;
MAGNONASHTEKAR, A .
PRAMANA, 1980, 15 (01) :107-115
[8]   QUANTUM FIELDS IN CURVED SPACE-TIMES [J].
ASHTEKAR, A ;
MAGNON, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 346 (1646) :375-394
[9]   AN ALGEBRAIC EXTENSION OF DIRAC QUANTIZATION - EXAMPLES [J].
ASHTEKAR, A ;
TATE, RS .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (12) :6434-6470
[10]  
Ashtekar A., 1991, Lectures on Non-Perturbative Canonical Gravity, DOI DOI 10.1142/1321