Algorithm of the k- Turbulence Equations Solution for the Ocean General Circulation Model

被引:2
|
作者
Moshonkin, S. N. [1 ,3 ]
Zalesny, V. B. [1 ,3 ]
Gusev, A. V. [1 ,2 ,3 ]
机构
[1] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
[2] Russian Acad Sci, Shirshov Inst Oceanol, Moscow 117997, Russia
[3] Russian Acad Sci, Marine Hydrophys Inst, Sevastopol 299011, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
ocean general circulation model; k- mixing parameterization; splitting technique; NORTH-ATLANTIC; MIXED-LAYER; VARIATIONAL ASSIMILATION; NUMERICAL-SIMULATION; CLOSURE MODELS; ARCTIC-OCEAN; PARAMETERIZATION; VARIABILITY; DYNAMICS; BREAKING;
D O I
10.1134/S0001433818050079
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The algorithm for splitting k- turbulence equations is used to parameterize viscosity and diffusion coefficients in the ocean general circulation model. The k- equations are split into stages describing the transport-diffusion and generation-dissipation of the turbulent kinetic energy and frequency function . At the generation-dissipation stage, the equations are solved analytically. Calculations of circulation in the North Atlantic-Arctic Ocean for 1948-2009 have been carried out. The experiments demonstrate an adequate reproduction of hydrophysical characteristics and high efficiency of the algorithm. It is shown that considering the climatic annual mean buoyancy frequency in the turbulence equations at the generation-dissipation stage is an important factor in improving the accuracy of simulated fields.
引用
收藏
页码:495 / 506
页数:12
相关论文
共 50 条
  • [1] Algorithm of the k–ω Turbulence Equations Solution for the Ocean General Circulation Model
    S. N. Moshonkin
    V. B. Zalesny
    A. V. Gusev
    Izvestiya, Atmospheric and Oceanic Physics, 2018, 54 : 495 - 506
  • [2] Sensitivity of the Ocean Circulation Model to the k-ω Vertical Turbulence Parametrization
    V. B. Zalesny
    S. N. Moshonkin
    Izvestiya, Atmospheric and Oceanic Physics, 2019, 55 : 470 - 479
  • [3] Sensitivity of the Ocean Circulation Model to the k-ω Vertical Turbulence Parametrization
    Zalesny, V. B.
    Moshonkin, S. N.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2019, 55 (05) : 470 - 479
  • [4] Positivity preservation and adaptive solution for the k-ε model of turbulence
    Ilinca, F
    Pelletier, D
    AIAA JOURNAL, 1998, 36 (01) : 44 - 50
  • [5] Anisotropic k-ϵ Model Based on General Principles of Statistical Turbulence
    Brouwers, J. J. H.
    INVENTIONS, 2024, 9 (05)
  • [6] A splitting turbulence algorithm for mixing parameterization in the ocean circulation model
    Moshonkin, S. N.
    Zalesny, V. B.
    Gusev, A. V.
    TURBULENCE, ATMOSPHERE AND CLIMATE DYNAMICS, 2019, 231
  • [7] Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations
    Bassi, F
    Crivellini, A
    Rebay, S
    Savini, M
    COMPUTERS & FLUIDS, 2005, 34 (4-5) : 507 - 540
  • [8] Simulation of Deep Cycle Turbulence by a Global Ocean General Circulation Model
    Pei, Suyang
    Shinoda, Toshiaki
    Wang, Wanqiu
    Lien, Ren-Chieh
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (15)
  • [9] COMMENTARY ON GENERAL EQUATIONS FOR OCEAN TURBULENCE
    COANTIC, M
    JOURNAL DE MECANIQUE, 1973, 12 (02): : 197 - 223
  • [10] Formulation of the k-ω turbulence model revisited
    Wilcox, David C.
    AIAA Journal, 2008, 46 (11): : 2823 - 2838