Identification of genetic loci for flag-leaf-related traits in wheat (Triticum aestivum L.) and their effects on grain yield

被引:6
|
作者
Wang, Ying [1 ,2 ]
Qiao, Ling [1 ]
Yang, Chenkang [1 ,2 ]
Li, Xiaohua [1 ]
Zhao, Jiajia [1 ]
Wu, Bangbang [1 ]
Zheng, Xingwei [1 ]
Li, Pengbo [3 ]
Zheng, Jun [1 ]
机构
[1] Shanxi Agr Univ, Inst Wheat Res, Linfen, Peoples R China
[2] Shanxi Univ, Sch Life Sci, Taiyuan, Peoples R China
[3] Shanxi Agr Univ, Inst Cotton Res, Yuncheng, Peoples R China
来源
关键词
wheat; flag leaf; flag leaf volume measurement; quantitative trait loci; grain; WINTER-WHEAT; QTL; SENESCENCE; NITROGEN; PHOTOSYNTHESIS; MORPHOLOGY; RATES; ANGLE; AREA;
D O I
10.3389/fpls.2022.990287
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Flag-leaf-related traits including length (FLL), width (FLW), area (FLA), thickness (FLT), and volume (FLV) of flag leaves are the most important determinants of plant architecture and yield in wheat. Understanding the genetic basis of these traits could accelerate the breeding of high yield wheat varieties. In this study, we constructed a doubled haploid (DH) population and analyzed flag-leaf-related traits in five experimental locations/years using the wheat 90K single-nucleotide polymorphism array. It's worth noting that a novel method was used to measure FLT and FLV easily. Leaf thickness at two-thirds of the leaf length from tip to collar represented the average leaf thickness as measured with freehand sections and was used to calculate the leaf volume. In addition, flag-leaf-related traits showed positive correlations with yield related traits under two different water regimes. A total of 79 quantitative trait loci (QTL) controlling the five traits were detected among all chromosomes except 4D and 5A, explaining 3.09-14.52% of the phenotypic variation. Among them, 15 stable QTL were identified in more than three environments, including two major QTL for FLT, six for FLW, three for FLA, two for FLT and two for FLV. DH lines with positive alleles at both QTL regions had an average FLL (9.90%), FLW (32.87%), FLT (6.62%), FLA (18.47%), and FLV (20.87%) greater than lines with contrasting alleles. QFLT-2B, QFLV-2A, and QFLV-7D were co-located with yield-related traits. The 15 QTL were validated by tightly linked kompetitive allele specific PCR (KASP) markers in a recombinant inbred line (RIL) population derived from a different cross. QFLL-4A, QFLW-4B, QFLA-5D.1, QFLA-7A, QFLA-7D.1, QFLT-2B, QFLT-6A, QFLV-2A, and QFLV-7D are likely novel loci. These results provide a better understanding of the genetic basis underlying flag-leaf-related traits. Also, target regions for fine mapping and marker-assisted selection were identified and these will be valuable for breeding high yielding bread wheat.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.)
    Gregersen, Per L.
    Holm, Preben Bach
    PLANT BIOTECHNOLOGY JOURNAL, 2007, 5 (01) : 192 - 206
  • [22] GENETIC VARIABILITY AND HERITABILITY STUDIES IN RELATION TO GRAIN YIELD AND ITS COMPONENT TRAITS IN WHEAT (TRITICUM AESTIVUM L.)
    Arya, Vichitra Kumar
    Singh, Jogendra
    Kumar, Lokendra
    Nagar, Satnam Singh
    Ahalawat, Nishant Kumar
    Chand, Pooran
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2018, 14 (01): : 215 - 222
  • [23] Genetic analysis of thermotolerance and grain yield traits of bread wheat (Triticum aestivum L.) Using diallel analysis
    Abdallah, Eman
    Salem, Abdelhamid Hassan
    Ali, Mohamed Mohamed Abdelhamid
    Kamal, Khaled Youssef
    BIOSCIENCE RESEARCH, 2019, 16 (02): : 2235 - 2245
  • [24] Identification of a major stable QTL for spikelet number in wheat (Triticum aestivum L.) and its genetic effects analysis on yield-related traits
    Mingsu Cao
    Jizi Dong
    Hao Wang
    Yibiao Cai
    Tianhang Ma
    Xiaohan Zhou
    Jingguo Xiao
    Shihui Li
    Linqu Chen
    Huiyuan Xu
    Chunhua Zhao
    Yongzhen Wu
    Han Sun
    Jun Ji
    Fa Cui
    Ran Qin
    Euphytica, 2022, 218
  • [25] Identification of a major stable QTL for spikelet number in wheat (Triticum aestivum L.) and its genetic effects analysis on yield-related traits
    Cao, Mingsu
    Dong, Jizi
    Wang, Hao
    Cai, Yibiao
    Ma, Tianhang
    Zhou, Xiaohan
    Xiao, Jingguo
    Li, Shihui
    Chen, Linqu
    Xu, Huiyuan
    Zhao, Chunhua
    Wu, Yongzhen
    Sun, Han
    Ji, Jun
    Cui, Fa
    Qin, Ran
    EUPHYTICA, 2022, 218 (07)
  • [26] Comparative changes in the physiological traits in the flag leaf of two senescing varieties of wheat (Triticum aestivum L.)
    Valentina Spanic
    Zvonimir Zdunic
    Marija Viljevac Vuletic
    Acta Physiologiae Plantarum, 2020, 42
  • [27] Irrigation and nitrogen effects on grain development and yield in wheat (Triticum aestivum L.)
    Waraich, Ejaz Ahmad
    Ahmad, R.
    Ali, Anser
    Ullah, Saif
    PAKISTAN JOURNAL OF BOTANY, 2007, 39 (05) : 1663 - 1672
  • [28] Identification of the quantitative trait loci controlling spike-related traits in hexaploid wheat (Triticum aestivum L.)
    Cao, Pei
    Liang, Xiaona
    Zhao, Hong
    Feng, Bo
    Xu, Enjun
    Wang, Liming
    Hu, Yuxin
    PLANTA, 2019, 250 (06) : 1967 - 1981
  • [29] Identification of the quantitative trait loci controlling spike-related traits in hexaploid wheat (Triticum aestivum L.)
    Pei Cao
    Xiaona Liang
    Hong Zhao
    Bo Feng
    Enjun Xu
    Liming Wang
    Yuxin Hu
    Planta, 2019, 250 : 1967 - 1981
  • [30] Line x Tester Mating Design Analysis for Grain Yield and Yield Related Traits in Bread Wheat (Triticum aestivum L.)
    Fellahi, Zine El Abidine
    Hannachi, Abderrahmane
    Bouzerzour, Hamenna
    Boutekrabt, Ammar
    INTERNATIONAL JOURNAL OF AGRONOMY, 2013, 2013