Global in time unbounded solutions for a non-local thermistor problem

被引:0
|
作者
Kavallaris, NI [1 ]
Tzanetis, DE [1 ]
机构
[1] Natl Tech Univ Athens, Fac Sci Appl, Dept Math, Athens 15780, Greece
来源
SCATTERING AND BIOMEDICAL ENGINEERING: MODELING AND APPLICATIONS | 2002年
关键词
D O I
10.1142/9789812777140_0019
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We study the behaviour of solutions of the non-local equation u(t)- u(xx) = lambda f(u)/(integral(1)(-1)f(u)dx)(2), x is an element of (-1,1),t > 0,; with Dirichlet boundary conditions. lambda* is a critical value such that for 0 < lambda < lambda* the corresponding steady-state problem has a unique solution, while for lambda >= lambda* there is no stationary solution. The function f satisfies f > 0; f' < 0 and integral(infinity)(0)f(s)d(s) < infinity. We show, by using comparison methods, that (a) u* (x, t) exists for all t > 0, (b) u* (x,t) -> infinity for every x is an element of (-1,1) as t -> infinity.
引用
收藏
页码:233 / 239
页数:7
相关论文
共 50 条
  • [21] A non-local inequality and global existence
    Gressman, Philip T.
    Krieger, Joachim
    Strain, Robert M.
    ADVANCES IN MATHEMATICS, 2012, 230 (02) : 642 - 648
  • [22] A variational problem with non-local constraints
    Carillo, S
    Chipot, M
    Caffarelli, GV
    WASCOM 2003: 12TH CONFERENCE ON WAVES AND STABILITY IN CONTINUOUS MEDIA, PROCEEDINGS, 2004, : 116 - 121
  • [23] On bouncing solutions in non-local gravity
    A. S. Koshelev
    S. Yu. Vernov
    Physics of Particles and Nuclei, 2012, 43 : 666 - 668
  • [24] Resonant problems for non-local elliptic operators with unbounded nonlinearites
    Chen, Yutong
    Su, Jiabao
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (09): : 5716 - 5731
  • [25] A singular non-local problem at resonance
    Kosmatov, Nickolai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (01) : 425 - 431
  • [26] Global existence of solutions for a fractional Caputo nonlocal thermistor problem
    Moulay Rchid Sidi Ammi
    Ismail Jamiai
    Delfim F. M. Torres
    Advances in Difference Equations, 2017
  • [27] Building quality: A non-local problem
    Meshkova, S.
    Standarty i Kachestvo, 2001, (02): : 68 - 72
  • [28] On a non-local problem for irregular equations
    Kornienko, VV
    SBORNIK MATHEMATICS, 2000, 191 (11-12) : 1607 - 1633
  • [29] A non-local semilinear eigenvalue problem
    Franzina, Giovanni
    Licheri, Danilo
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) : 2193 - 2221
  • [30] On bouncing solutions in non-local gravity
    Koshelev, A. S.
    Vernov, S. Yu
    PHYSICS OF PARTICLES AND NUCLEI, 2012, 43 (05) : 666 - 668