Hydrazine modified g-C3N4 with enhanced photocatalytic activity for degradation of indigo carmine

被引:5
|
作者
Valencia, G. Karen [1 ]
Hernandez-Gordillo, Agileo [1 ]
Mendez-Galvan, Melissa [2 ]
Morett, Diego [1 ]
Rodil, Sandra E. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Mat, Circuito Exterior SN,Ciudad Univ, Coyoacan 04510, Mexico
[2] Univ Nacl Autonoma Mexico, Dept Fis Quim, Inst Fis, Ciudad Univ, Coyoacan 04510, Mexico
关键词
Indigo carmine; g-C3N4; Photocatalysis; GRAPHITIC CARBON NITRIDE; EFFICIENT PHOTOCATALYSTS; FACILE FABRICATION; ACTIVATED CARBON; NANOSHEETS; HETEROJUNCTION; PERFORMANCE; COMPOSITES; ADSORPTION; NITROGEN;
D O I
10.1016/j.mssp.2022.106900
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Polymeric graphitic carbon nitride (g-C3N4) was obtained from urea and modified by heat polymerization at 550. C in the presence of hydrazine as a modifier agent. The influence of in-situ generated NH3 by hydrazine decomposition at different contents (0.5, 1, 1.5, and 2 mL) on the physicochemical properties and surface properties (water contact angle and point of zero charge) of the g-C3N4 were investigated. The modified g-C3N4 were analyzed by X-ray diffraction, scanning electron microscopy, diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, photoluminescence, Fourier Transform Infrared, water contact angle, surface area, and the point of zero charge. The in-situ generated NH3 induced an evolution from nano-flakes to lamellar plate morphology depending on stacked interplanar. The influence of surface properties on the photocatalytic response of the unmodified and modified g-C3N4 was tested in the photodegradation of indigo carmine dye at pH = 3.5 and 6.5 solutions under blue LEDs light. The photostability of the samples was tested after 4 cycles of reaction. The properties (surface area (SA); water contact angle (WCA), and optical gap) influence the photocatalytic response, which was summarized in a single parameter defined as SA/(WCA*gap). The maximum value of this product match with results obtained for the most active photocatalyst (U-Hz1).
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Bismuth doped g-C3N4 composites for enhanced photocatalytic degradation of ciprofloxacin
    Saini, Pooja
    Ahmadizamani, Khadijeh
    Chakinala, Nandana
    Mukherjee, Sagnik
    Sethia, Govind
    Chakinala, Anand Gupta
    Surolia, Praveen K.
    JOURNAL OF MOLECULAR STRUCTURE, 2025, 1321
  • [22] Synthesis of Flowerlike g-C3N4/BiOBr with Enhanced Visible Light Photocatalytic Activity for Dye Degradation
    Jiang, Man
    Shi, Yanbiao
    Huang, Jingwei
    Wang, Lei
    She, Houde
    Tong, Jinhui
    Su, Bitao
    Wang, Qizhao
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2018, (17) : 1834 - 1841
  • [23] Synthesis of CdS/g-C3N4/Vermiculite Heterostructures with Enhanced Visible Photocatalytic Activity for Dye Degradation
    Xue, Ruixue
    Wang, Fangwai
    Ge, Yizhao
    Ma, Yujie
    He, Xiang
    Wang, Zijun
    CHEMISTRYSELECT, 2021, 6 (37): : 9941 - 9950
  • [24] Construction of AgBiO3/g-C3N4 nanocomposites with enhanced photocatalytic activity and their application in the degradation of bisphenol A
    Zhao, Zehua
    Wang, Yi
    Yu, Qiang
    Lin, Xiaochen
    Xu, Xiaowei
    Zhang, Jun
    Lu, Haijun
    Chen, Xiaoxi
    Zhang, Dapeng
    DESALINATION AND WATER TREATMENT, 2021, 227 : 228 - 237
  • [25] Vesicular BiVO4 nanostructures modified by g-C3N4 quantum dots for enhanced photocatalytic activity
    Wei, Xuemei
    Liang, Pengfei
    Hong, Tianjie
    Zhang, Pingan
    Tao, Feifei
    Li, Qian
    Materials Science in Semiconductor Processing, 2024, 172
  • [26] Vesicular BiVO4 nanostructures modified by g-C3N4 quantum dots for enhanced photocatalytic activity
    Wei, Xuemei
    Liang, Pengfei
    Hong, Tianjie
    Zhang, Pingan
    Tao, Feifei
    Li, Qian
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 172
  • [27] Synthesis of Carbon Ball Modified g-C3N4 for Improved Photocatalytic Activity
    Liu Chong
    Liu Lilai
    Nie Jiahui
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2018, 39 (07): : 1511 - 1517
  • [28] Perylene tetracarboxylic bisimide decorated g-C3N4 with enhanced photocatalytic activity
    Zhao W.
    Hao N.
    Zhang G.
    Qian H.
    Ma A.
    Zhou H.
    Chen W.
    Cailiao Gongcheng/Journal of Materials Engineering, 2022, 50 (03): : 98 - 106
  • [29] Synthesis and enhanced photocatalytic activity of g-C3N4 hybridized CdS nanoparticles
    Liu, Qing Ying
    Qi, Yi Ling
    Zheng, Yi Fan
    Song, Xu Chun
    BULLETIN OF MATERIALS SCIENCE, 2017, 40 (07) : 1329 - 1333
  • [30] Sulfur/g-C3N4 Composites with Enhanced Visible Light Photocatalytic Activity
    Xu, Yao
    Zhang, Wei-De
    SCIENCE OF ADVANCED MATERIALS, 2014, 6 (12) : 2611 - 2617