Methylglyoxal metabolism in trypanosomes and leishmania

被引:24
作者
Wyllie, Susan [1 ]
Fairlamb, Alan H. [1 ]
机构
[1] Univ Dundee, Div Biol Chem & Drug Discovery, Coll Life Sci, Wellcome Trust Bioctr, Dundee DD1 5EH, Angus, Scotland
基金
英国惠康基金;
关键词
Trypanosoma; Leishmania; Methylglyoxal; Glyoxalase; Trypanothione; Drug discovery; DEPENDENT GLYOXALASE-I; BLOOD-STREAM FORMS; D-LACTATE; ALDOSE REDUCTASE; POTENTIAL TARGET; BRUCEI-BRUCEI; TRYPANOTHIONE; DONOVANI; SPECIFICITY; ENZYMES;
D O I
10.1016/j.semcdb.2011.02.001
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Methylglyoxal is a toxic by-product of glycolysis and other metabolic pathways. In mammalian cells, the principal route for detoxification of this reactive metabolite is via the glutathione-dependent glyoxalase pathway forming D-lactate, involving lactoylglutathione lyase (GLO1; EC 4.4.1.5) and hydroxyacylglutathione hydrolase (GLO2; EC 3.2.1.6). In contrast, the equivalent enzymes in the trypanosomatid parasites Trypanosoma cruzi and Leishmania spp. show >200-fold selectivity for glutathionylspermidine and trypanothione over glutathione and are therefore sensu stricto lactoylglutathionylspermidine lyases (EC 4.4.1.-) and hydroxyacylglutathionylspermidine hydrolases (EC 3.2.1.-). The unique substrate specificity of the parasite glyoxalase enzymes can be directly attributed to their unusual active site architecture. The African trypanosome differs from these parasites in that it lacks GLO1 and converts methylglyoxal to l-lactate rather than D-lactate. Since Trypanosoma brucei is the most sensitive of the trypanosomatids to methylglyoxal toxicity, the absence of a complete and functional glyoxalase pathway in these parasites is perplexing. Alternative routes of methylglyoxal detoxification in T. brucei are discussed along with the potential of exploiting trypanosomatid glyoxalase enzymes as targets for anti-parasitic chemotherapy. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:271 / 277
页数:7
相关论文
共 53 条
[1]   Ovothiol and trypanothione as antioxidants in trypanosomatids [J].
Ariyanayagam, MR ;
Fairlamb, AH .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2001, 115 (02) :189-198
[2]   Specificity of the trypanothione-dependent Leishmania major glyoxalase I:: structure and biochemical comparison with the human enzyme [J].
Ariza, A ;
Vickers, TJ ;
Greig, N ;
Armour, KA ;
Dixon, MJ ;
Eggleston, IM ;
Fairlamb, AH ;
Bond, CS .
MOLECULAR MICROBIOLOGY, 2006, 59 (04) :1239-1248
[3]   The biochemical basis of arsenical-diamidine crossresistance in African trypanosomes [J].
Barrett, MP ;
Fairlamb, AH .
PARASITOLOGY TODAY, 1999, 15 (04) :136-140
[4]   The genome of the African trypanosome Trypanosoma brucei [J].
Berriman, M ;
Ghedin, E ;
Hertz-Fowler, C ;
Blandin, G ;
Renauld, H ;
Bartholomeu, DC ;
Lennard, NJ ;
Caler, E ;
Hamlin, NE ;
Haas, B ;
Böhme, W ;
Hannick, L ;
Aslett, MA ;
Shallom, J ;
Marcello, L ;
Hou, LH ;
Wickstead, B ;
Alsmark, UCM ;
Arrowsmith, C ;
Atkin, RJ ;
Barron, AJ ;
Bringaud, F ;
Brooks, K ;
Carrington, M ;
Cherevach, I ;
Chillingworth, TJ ;
Churcher, C ;
Clark, LN ;
Corton, CH ;
Cronin, A ;
Davies, RM ;
Doggett, J ;
Djikeng, A ;
Feldblyum, T ;
Field, MC ;
Fraser, A ;
Goodhead, I ;
Hance, Z ;
Harper, D ;
Harris, BR ;
Hauser, H ;
Hostetter, J ;
Ivens, A ;
Jagels, K ;
Johnson, D ;
Johnson, J ;
Jones, K ;
Kerhornou, AX ;
Koo, H ;
Larke, N .
SCIENCE, 2005, 309 (5733) :416-422
[5]  
BROHN FH, 1980, MOL BIOCHEM PARASIT, V1, P291, DOI 10.1016/0166-6851(80)90062-6
[6]   GLUTATHIONE S-TRANSFERASE IN CESTODES [J].
BROPHY, PM ;
BARRETT, J .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1989, 17 (05) :910-910
[7]   Enzymes of the thiol-dependent hydroperoxide metabolism in pathogens as potential drug targets (Reprinted from Thiol Metabolism and Redox Regulation of Cellular Functions) [J].
Budde, H ;
Flohé, L .
BIOFACTORS, 2003, 17 (1-4) :83-92
[8]   Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue [J].
Cameron, AD ;
Ridderström, M ;
Olin, B ;
Mannervik, B .
STRUCTURE, 1999, 7 (09) :1067-1078
[9]   Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue [J].
Cameron, AD ;
Ridderström, M ;
Olin, B ;
Kavarana, MJ ;
Creighton, DJ ;
Mannervik, B .
BIOCHEMISTRY, 1999, 38 (41) :13480-13490
[10]   AEROBIC FERMENTATION OF GLUCOSE BY TRYPANOSOMATIDS [J].
CAZZULO, JJ .
FASEB JOURNAL, 1992, 6 (13) :3153-3161