Quench dynamics of the Anderson impurity model at finite temperature using matrix product states: entanglement and bath dynamics

被引:19
作者
Kohn, Lucas [1 ]
Santoro, Giuseppe E. [1 ,2 ,3 ]
机构
[1] SISSA, Via Bonomea 265, I-1136 Trieste, Italy
[2] Abdus Salaam Int Ctr Theoret Phys, POB 586, I-34014 Trieste, Italy
[3] SISSA, Ist Officina Mat, Consiglio Nazl Ric, Via Bonomea 265, I-34136 Trieste, Italy
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2022年 / 2022卷 / 06期
关键词
tensor network simulations; Anderson model; Kondo effect; quantum quenches; RENORMALIZATION-GROUP;
D O I
10.1088/1742-5468/ac729b
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the dynamics of the quenched Anderson model at finite temperature using matrix product states (MPSs). Exploiting a chain mapping for the electron bath, we investigate the entanglement structure in the MPS for various orderings of the two chains, which emerge from the thermofield transformation employed to deal with nonzero temperature. We show that merging both chains can significantly lower the entanglement at finite temperatures as compared to an intuitive nearest-neighbor implementation of the Hamiltonian. Analyzing the population of the free bath modes-possible when simulating the full dynamics of impurity plus bath-we find clear signatures of the Kondo effect in the quench dynamics.
引用
收藏
页数:25
相关论文
共 49 条
[1]   LOCALIZED MAGNETIC STATES IN METALS [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1961, 124 (01) :41-&
[2]  
[Anonymous], 2004, ORTHOGONAL POLYNOMIA, DOI DOI 10.1093/OSO/9780198506720.001.0001, Patent No. [2205.12815, 220512815]
[3]   Time dependent variational principle for tree tensor networks [J].
Bauernfeind, Daniel ;
Aichhorn, Markus .
SCIPOST PHYSICS, 2020, 8 (02)
[4]   Fork Tensor-Product States: Efficient Multiorbital Real-Time DMFT Solver [J].
Bauernfeind, Daniel ;
Zingl, Manuel ;
Triebl, Robert ;
Aichhorn, Markus ;
Evertz, Hans Gerd .
PHYSICAL REVIEW X, 2017, 7 (03)
[5]   Theory of transport through quantum-dot spin valves in the weak-coupling regime -: art. no. 195345 [J].
Braun, M ;
König, J ;
Martinek, J .
PHYSICAL REVIEW B, 2004, 70 (19) :1-12
[6]   Zero temperature metal-insulator transition in the infinite-dimensional Hubbard model [J].
Bulla, R .
PHYSICAL REVIEW LETTERS, 1999, 83 (01) :136-139
[7]   Anderson impurity in pseudo-gap Fermi systems [J].
Bulla, R ;
Pruschke, T ;
Hewson, AC .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (47) :10463-10474
[8]   Numerical renormalization group method for quantum impurity systems [J].
Bulla, Ralf ;
Costi, Theo A. ;
Pruschke, Thomas .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :395-450
[9]   Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials [J].
Chin, Alex W. ;
Rivas, Angel ;
Huelga, Susana F. ;
Plenio, Martin B. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
[10]   Thermofield-based chain-mapping approach for open quantum systems [J].
de Vega, Ines ;
Banuls, Mari-Carmen .
PHYSICAL REVIEW A, 2015, 92 (05)