Secrecy-Based Energy-Efficient Mobile Edge Computing via Cooperative Non-Orthogonal Multiple Access Transmission

被引:41
作者
Qian, Liping [1 ]
Wu, Weicong [1 ]
Lu, Weidang [1 ]
Wu, Yuan [2 ,3 ,4 ]
Lin, Bin [5 ,6 ]
Quek, Tony Q. S. [7 ]
机构
[1] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 310023, Peoples R China
[2] Univ Macau, State Key Lab Internet Things Smart City, Macau, Peoples R China
[3] Univ Macau, Dept Comp Informat Sci, Macau, Peoples R China
[4] Zhuhai UM Sci & Technol Res Inst, Zhuhai 519000, Peoples R China
[5] Dalian Maritime Univ, Dept Commun Engn, Dalian 116026, Peoples R China
[6] Peng Cheng Lab, Network Commun Res Ctr, Shenzhen 518052, Peoples R China
[7] Singapore Univ Technol & Design, Informat Syst Technol & Design Pillar, Singapore 487372, Singapore
基金
中国国家自然科学基金;
关键词
Mobile edge computing (MEC); Non-orthogonal Multiple Access (NOMA); physical layer security (PLS); cooperative jamming; PHYSICAL LAYER SECURITY; JOINT OPTIMIZATION; NETWORKS; NOMA; COMMUNICATION; ALLOCATION; DESIGN;
D O I
10.1109/TCOMM.2021.3070620
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mobile edge computing (MEC) has been envisioned as a promising approach for enabling the computation-intensive yet latency-sensitive mobile Internet services in future wireless networks. In this paper, we investigate the secrecy based energy-efficient MEC via cooperative Non-orthogonal Multiple Access (NOMA) transmission. We consider that an edge-computing device (ED) offloads its computation-workload to the edge-computing server (ECS) subject to the overhearing-attack of a malicious eavesdropper. To enhance the secrecy of the ED's offloading transmission, a group of conventional wireless devices (WDs) are scheduled to form a NOMA-transmission group with the ED for sending data to the cellular base station (BS) while providing cooperative jamming to the eavesdropper. We formulate a joint optimization of the ED's off-loaded workload, transmit-power, NOMA-transmission duration as well as the selection of the WDs, with the objective of minimizing the total energy consumption of the ED and the selected WDs, while subject to the ED's latency-requirement and the selected WDs' required data-volumes to deliver. Despite the nature of mixed binary and non-convex programming of the formulated problem, we exploit the vertical decomposition and propose a three-layered algorithm for solving it efficiently. To further address the fairness among different WDs, we investigate a system-wise utility maximization problem that accounts for the fairness in the WDs' delivered data and the total energy consumption of the ED and WDs. By exploiting our previously designed layered-algorithm, we further propose a stochastic learning based algorithm for determining each WD's optimal data-volume delivered. Numerical results are provided to validate the effectiveness of our proposed algorithms as well as the performance advantage of the secrecy based computation offloading via NOMA.
引用
收藏
页码:4659 / 4677
页数:19
相关论文
共 47 条
[1]  
Al-Imari M, 2014, 2014 11TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATIONS SYSTEMS (ISWCS), P781, DOI 10.1109/ISWCS.2014.6933459
[2]   Secrecy Performance of Decode-and-Forward Based Hybrid RF/VLC Relaying Systems [J].
Al-Khori, Jaber ;
Nauryzbayev, Galymzhan ;
Abdallah, Mohamed M. ;
Hamdi, Mounir .
IEEE ACCESS, 2019, 7 :10844-10856
[3]  
Atallah M, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON UBIQUITOUS WIRELESS BROADBAND (ICUWB)
[4]   Joint Optimization of Service Caching Placement and Computation Offloading in Mobile Edge Computing Systems [J].
Bi, Suzhi ;
Huang, Liang ;
Zhang, Ying-Jun Angela .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (07) :4947-4963
[5]   Exploiting Inter-User Interference for Secure Massive Non-Orthogonal Multiple Access [J].
Chen, Xiaoming ;
Zhang, Zhaoyang ;
Zhong, Caijun ;
Ng, Derrick Wing Kwan ;
Jia, Rundong .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2018, 36 (04) :788-801
[6]   Joint Computation Offloading and User Association in Multi-Task Mobile Edge Computing [J].
Dai, Yueyue ;
Xu, Du ;
Maharjan, Sabita ;
Zhang, Yan .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (12) :12313-12325
[7]   A tutorial on the cross-entropy method [J].
De Boer, PT ;
Kroese, DP ;
Mannor, S ;
Rubinstein, RY .
ANNALS OF OPERATIONS RESEARCH, 2005, 134 (01) :19-67
[8]   Impact of Non-Orthogonal Multiple Access on the Offloading of Mobile Edge Computing [J].
Ding, Zhiguo ;
Fan, Pingzhi ;
Poor, H. Vincent .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (01) :375-390
[9]   Application of Non-Orthogonal Multiple Access in LTE and 5G Networks [J].
Ding, Zhiguo ;
Liu, Yuanwei ;
Choi, Jinho ;
Sun, Qi ;
Elkashlan, Maged ;
I, Chih-Lin ;
Poor, H. Vincent .
IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (02) :185-191
[10]   Learning for Computation Offloading in Mobile Edge Computing [J].
Dinh, Thinh Quang ;
La, Quang Duy ;
Quek, Tony Q. S. ;
Shin, Hyundong .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2018, 66 (12) :6353-6367