Plasma Membrane Ca2+ ATPase Activity Enables Sustained Store-operated Ca2+ Entry in the Absence of a Bulk Cytosolic Ca2+ Rise

被引:2
|
作者
Barak, Pradeep [1 ,2 ]
Kaur, Suneet [3 ]
Scappini, Erica [3 ]
Tucker, Charles J. [3 ]
Parekh, Anant B. [1 ,3 ]
机构
[1] Univ Oxford, Dept Physiol Anat & Genet, Oxford OX1 3PT, England
[2] Oxford Nanoimaging, Linacre House,Jordan Hill Business Pk,Banbury Rd, Oxford OX2 8TA, England
[3] NIEHS, Lab Signal Transduct, NIH, Res Triangle Pk, NC 27709 USA
来源
FUNCTION | 2022年 / 3卷 / 05期
关键词
Ca2+; plasma membrane ATPase; calcium channel; Transcription factor; ACTIVATED CALCIUM CURRENT; IMMUNOLOGICAL SYNAPSE; CRAC CHANNELS; DEPENDENT INACTIVATION; MICRODOMAINS; RELEASE; STIM1; MITOCHONDRIA; DEPLETION; DYNAMICS;
D O I
10.1093/function/zqac040
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In many cell types, the rise in cytosolic Ca2+ due to opening of Ca2+ release-activated Ca2+ (CRAC) channels drives a plethora of responses, including secretion, motility, energy production, and gene expression. The amplitude and time course of the cytosolic Ca2+ rise is shaped by the rates of Ca2+ entry into and removal from the cytosol. However, an extended bulk Ca2+ rise is toxic to cells. Here, we show that the plasma membrane Ca2+ ATPase (PMCA) pump plays a major role in preventing a prolonged cytosolic Ca2+ signal following CRAC channel activation. Ca2+ entry through CRAC channels leads to a sustained sub-plasmalemmal Ca2+ rise but bulk Ca2+ is kept low by the activity of PMCA4b. Despite the low cytosolic Ca2+, membrane permeability to Ca2+ is still elevated and Ca2+ continues to enter through CRAC channels. Ca2+-dependent NFAT activation, driven by Ca2+ nanodomains near the open channels, is maintained despite the return of bulk Ca2+ to near pre-stimulation levels. Our data reveal a central role for PMCA4b in determining the pattern of a functional Ca2+ signal and in sharpening local Ca2+ gradients near CRAC channels, whilst protecting cells from a toxic Ca2+ overload.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Store-operated Ca2+ entry during intracellular Ca2+ release in mammalian skeletal muscle
    Launikonis, Bradley S.
    Rios, Eduardo
    JOURNAL OF PHYSIOLOGY-LONDON, 2007, 583 (01): : 81 - 97
  • [32] Store-operated Ca2+ entry in two distinct arterial myocyte SR Ca2+ stores
    Golovina, VA
    Berra-Romani, R
    Blaustein, MP
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 390A - 391A
  • [33] Ca2+ Signaling but Not Store-Operated Ca2+ Entry Is Required for the Function of Macrophages and Dendritic Cells
    Vaeth, Martin
    Zee, Isabelle
    Concepcion, Axel R.
    Maus, Mate
    Shaw, Patrick
    Portal-Celhay, Cynthia
    Zahra, Aleena
    Kozhaya, Lina
    Weidinger, Carl
    Philips, Jennifer
    Unutmaz, Derya
    Feske, Stefan
    JOURNAL OF IMMUNOLOGY, 2015, 195 (03): : 1202 - 1217
  • [34] Store-operated Ca2+ entry-dependent Ca2+ refilling in the endoplasmic reticulum in astrocytes
    Okubo, Yohei
    Iino, Masamitsu
    Hirose, Kenzo
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 522 (04) : 1003 - 1008
  • [35] SR Ca2+ pump activity and store-operated Ca2+ entry in neonatal rabbit cardiac ventricular myocytes
    Huang, JB
    van Breemen, C
    Hove-Madsen, L
    Tibbits, GF
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 384A - 384A
  • [36] Ryanodine Receptor Activity Regulates the Levels of Ca2+ Extrusion and Store-Operated Ca2+ Entry in Skeletal Muscle
    Cully, Tanya R.
    Choi, Rocky H.
    Shannon, Thomas R.
    Launikonis, Bradley S.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 183A - 183A
  • [37] Arachidonic acid in astrocytes blocks Ca2+ oscillations by inhibiting store-operated Ca2+ entry, and causes delayed Ca2+ influx
    Sergeeva, M
    Strokin, M
    Wang, H
    Ubl, JJ
    Reiser, G
    CELL CALCIUM, 2003, 33 (04) : 283 - 292
  • [38] Lysosomal agents inhibit store-operated Ca2+ entry
    Morgan, Anthony J.
    Galione, Antony
    JOURNAL OF CELL SCIENCE, 2021, 134 (02)
  • [39] Role of store-operated Ca2+ entry in cardiovascular disease
    Ting Lu
    Yihua Zhang
    Yong Su
    Dayan Zhou
    Qiang Xu
    Cell Communication and Signaling, 20
  • [40] Store-operated Ca2+ entry in muscle physiology and diseases
    Pan, Zui
    Brotto, Marco
    Ma, Jianjie
    BMB REPORTS, 2014, 47 (02) : 69 - 79