On the entire self-shrinking solutions to Lagrangian mean curvature flow

被引:30
作者
Huang, Rongli [1 ]
Wang, Zhizhang [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
Primary 53C44; Secondary 53A10;
D O I
10.1007/s00526-010-0364-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors prove that the logarithmic Monge-AmpSre flow with uniformly bound and convex initial data satisfies uniform decay estimates away from time t = 0. Then applying the decay estimates, we conclude that every entire classical strictly convex solution of the equation det D(2)u = exp{n(-u + 1/2 Sigma(n)(i=1)x(i)partial derivative u/partial derivative x(i))}, should be a quadratic polynomial if the inferior limit of the smallest eigenvalue of the function |x|(2)D(2)u at infinity has an uniform positive lower bound larger than 2(1 - 1/n). Using a similar method, we can prove that every classical convex or concave solution of the equation Sigma(n)(i=1)arctan lambda(i) = -u + 1/2 Sigma(n)(i=1)x(i)partial derivative u/partial derivative x(i) must be a quadratic polynomial, where lambda(i) are the eigenvalues of the Hessian D(2)u.
引用
收藏
页码:321 / 339
页数:19
相关论文
共 21 条
[1]  
[Anonymous], 1998, Grundlehren der mathematischen Wissenschaften
[2]   Liouville property and regularity of a Hessian quotient equation [J].
Bao, JG ;
Chen, JY ;
Guan, B ;
Ji, M .
AMERICAN JOURNAL OF MATHEMATICS, 2003, 125 (02) :301-316
[3]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[4]   An extension to a theorem of Jorgens, Calabi, and Pogorelov [J].
Caffarelli, L ;
Li, YY .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (05) :549-583
[5]  
Calabi E., 1958, MICH MATH J, V5, P105, DOI 10.1307/mmj/1028998055
[6]  
Chau A, ARXIV09053869
[7]  
CHAU A, ARXIV09023300
[8]  
Colding T., ARXIV09083788
[9]   COMPARISON PRINCIPLE AND CONVEXITY PRESERVING PROPERTIES FOR SINGULAR DEGENERATE PARABOLIC EQUATIONS ON UNBOUNDED-DOMAINS [J].
GIGA, Y ;
GOTO, S ;
ISHII, H ;
SATO, MH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (02) :443-470
[10]   Mean curvature flow of monotone Lagrangian submanifolds [J].
Groh, K. ;
Schwarz, M. ;
Smoczyk, K. ;
Zehmisch, K. .
MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (02) :295-327