Melting upon Coalescence of Solid Nanoparticles

被引:2
作者
Kamachali, Reza Darvishi [1 ]
机构
[1] BAM Fed Inst Mat Res & Testing, Unter Eichen 87, D-12205 Berlin, Germany
来源
SOLIDS | 2022年 / 3卷 / 02期
关键词
molecular dynamics simulation; nanoparticles; phase transition; size effect; GOLD NANOPARTICLES; SIZE; TEMPERATURE; CATALYSIS; BEHAVIOR; PHASE;
D O I
10.3390/solids3020025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The large surface-to-volume ratio of nanoparticles is understood to be the source of many interesting phenomena. The melting temperature of nanoparticles is shown to dramatically reduce compared to bulk material. Yet, at temperatures below this reduced melting point, a liquid-like atomic arrangement on the surface of nanoparticles is still anticipated to influence its properties. To understand such surface effects, here, we study the coalescence of Au nanoparticles of various sizes using molecular dynamics simulations. Analysis of the potential energy and Lindemann index distribution across the nanoparticles reveals that high-energy, high-mobility surface atoms can enable the coalescence of nanoparticles at temperatures much lower than their corresponding melting point. The smaller the nanoparticles, the larger the difference between their melting and coalescence temperatures. For small enough particles and/or elevated enough temperatures, we found that the coalescence leads to a melting transition of the two nominally solid nanoparticles, here discussed in relation to the heat released due to the surface reduction upon the coalescence and the size dependence of latent heat. Such discontinuous melting transitions can lead to abrupt changes in the properties of nanoparticles, important for their applications at intermediate temperatures.
引用
收藏
页码:361 / 373
页数:13
相关论文
共 51 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]  
Allen M. P., 2017, COMPUTER SIMULATION, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[3]   On the coalescence of gold nanoparticles [J].
Arcidiacono, S ;
Bieri, NR ;
Poulikakos, D ;
Grigoropoulos, CP .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2004, 30 (7-8) :979-994
[4]   Controlled Microwave-Hydrolyzed Starch as a Stabilizer for Green Formulation of Aqueous Gold Nanoparticle Ink for Flexible Printed Electronics [J].
Bacalzo, Nikita P., Jr. ;
Go, Lance P. ;
Querebillo, Christine Joy ;
Hildebrandt, Peter ;
Limpoco, F. T. ;
Enriquez, Erwin P. .
ACS APPLIED NANO MATERIALS, 2018, 1 (03) :1247-1256
[5]   Nanoparticle shapes by using Wulff constructions and first-principles calculations [J].
Barmparis, Georgios D. ;
Lodziana, Zbigniew ;
Lopez, Nuria ;
Remediakis, Ioannis N. .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 :361-368
[6]   Sorting Nanoparticles by Centrifugal Fields in Clean Media [J].
Bonaccorso, Francesco ;
Zerbetto, Mirco ;
Ferrari, Andrea C. ;
Amendola, Vincenzo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (25) :13217-13229
[7]   SIZE EFFECT ON MELTING TEMPERATURE OF GOLD PARTICLES [J].
BUFFAT, P ;
BOREL, JP .
PHYSICAL REVIEW A, 1976, 13 (06) :2287-2298
[8]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[9]   Manufacturing nanomaterials: from research to industry [J].
Charitidis, Costas A. ;
Georgiou, Pantelitsa ;
Koklioti, Malamatenia A. ;
Trompeta, Aikaterini-Flora ;
Markakis, Vasileios .
MANUFACTURING REVIEW, 2014, 1
[10]  
Chui Y., 2007, Molecular Dynamics Study of Structure and Stability in Au Nanoparticles