Determining the initial spatial extent of an environmental impact assessment with a probabilistic screening methodology

被引:13
作者
Peeters, Luk J. M. [1 ]
Pagendam, Daniel E. [2 ]
Crosbie, Russell S. [3 ]
Rachakonda, Praveen K. [4 ]
Dawes, Warrick R. [5 ]
Gao, Lei [3 ]
Marvanek, Steve P. [3 ]
Zhang, YongQiang [6 ]
McVicar, Tim R. [6 ]
机构
[1] CSIRO Mineral Resources, PMB 2, Glen Osmond, SA 5064, Australia
[2] CSIRO Data61, GPO Box 2583, Brisbane, Qld 4001, Australia
[3] CSIRO Land & Water, Glen Osmond, SA 5064, Australia
[4] CSIRO Energy, PMB 1130, Bentley, WA 6102, Australia
[5] CSIRO Land & Water, PMB 5, Wembley, WA 6913, Australia
[6] CSIRO Land & Water, GPO Box 1700, Canberra, ACT 2601, Australia
关键词
Environmental impact assessment; Uncertainty analysis; Hydrogeology; Coal bed methane; Coal mining; SENSITIVITY-ANALYSIS; MODEL; UNCERTAINTY; ERROR; FRAMEWORK; CLOUD; GAS;
D O I
10.1016/j.envsoft.2018.08.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A crucial decision in defining the scope of an environmental impact assessment is to delineate the initial assessment area. We developed a probabilistic methodology to determine this area, which starts by identifying a key environmental variable, maximum acceptable change and acceptable probability of exceeding that threshold. The exceedance probability is determined with a limits of acceptability rejection sampling of informed prior parameter distributions. A qualitative uncertainty analysis, a formal and systematic discussion of the main assumptions and model choices, is complemented with global sensitivity analysis of the model results to identify the major sources of uncertainty and provide guidance for further research and data collection. For the case study on coal development in the Gloucester Basin (NSW, Australia), the initial assessment extent is unlikely to extend more than 5 km from the edge of the planned coal mines. The major source of uncertainty is the planned mine water production rate.
引用
收藏
页码:353 / 367
页数:15
相关论文
共 91 条
[1]  
AGL Energy Limited, 2015, GLOUC GAS PROJ EXTR
[2]  
[Anonymous], TECHNIQUES WATER RES
[3]   A review of surrogate models and their application to groundwater modeling [J].
Asher, M. J. ;
Croke, B. F. W. ;
Jakeman, A. J. ;
Peeters, L. J. M. .
WATER RESOURCES RESEARCH, 2015, 51 (08) :5957-5973
[4]   A route to more tractable expert advice [J].
Aspinall, Willy .
NATURE, 2010, 463 (7279) :294-295
[5]  
Bakker M., 2015, TTIM MULTIAQUIFER TR
[6]   Evaluating an interdisciplinary research project: Lessons learned for organisations, researchers and funders [J].
Bark, Rosalind H. ;
Kragt, Marit E. ;
Robson, Barbara J. .
INTERNATIONAL JOURNAL OF PROJECT MANAGEMENT, 2016, 34 (08) :1449-1459
[7]  
Barlow P.M., 2012, 1376 US GEOL SRUV
[8]  
Barnett B, 2012, Waterlines report 82, DOI [10.5422/fordham/9780823263752.003.0009, DOI 10.5422/FORDHAM/9780823263752.003.0009]
[9]   Characterising performance of environmental models [J].
Bennett, Neil D. ;
Croke, Barry F. W. ;
Guariso, Giorgio ;
Guillaume, Joseph H. A. ;
Hamilton, Serena H. ;
Jakeman, Anthony J. ;
Marsili-Libelli, Stefano ;
Newham, Lachlan T. H. ;
Norton, John P. ;
Perrin, Charles ;
Pierce, Suzanne A. ;
Robson, Barbara ;
Seppelt, Ralf ;
Voinov, Alexey A. ;
Fath, Brian D. ;
Andreassian, Vazken .
ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 40 :1-20
[10]   Fault zone hydrogeology [J].
Bense, V. F. ;
Gleeson, T. ;
Loveless, S. E. ;
Bour, O. ;
Scibek, J. .
EARTH-SCIENCE REVIEWS, 2013, 127 :171-192