Numerical study on NOx/CO emissions in the diffusion flames of high-temperature off-gas of steelmaking converter

被引:9
|
作者
Li, Sen [1 ]
Wei, Xiaolin [1 ]
Yu, Linxin [1 ]
机构
[1] Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Off-gas of steelmaking converter; NOx; CO; Counterflow diffusion flame; LAMINAR;
D O I
10.1016/j.apenergy.2010.10.030
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The combustion of high-temperature off-gas of steelmaking converter with periodical change of temperature and CO concentration always leads to CO and NOx over-standard emissions. In the paper, high-temperature off-gas combustion is simulated by adopting counterflow diffusion flame model, and some influencing factors of CO and NOx emissions are investigated by adopting a detailed chemistry GRI 3.0 mechanism. The emission index of NOx (EINOx) decreases 1.7-4.6% when air stoichiometric ratio (SR) increase from 0.6 to 1.4, and it dramatically increases with off-gas temperature at a given SR when the off-gas temperature is above 1500 K. High-concentration CO in off-gas can result in high NOx emissions, and NOx levels increase dramatically with CO concentration when off-gas temperature is above 1700 K. Both SR and off-gas temperature are important for the increase of CO burnout index (BICO) when SR is less than 1.0, but BICO increase about 1% when off-gas temperature increases from 1100 K to 1900 K at SR > 1.0. BICO increases with CO concentration in off-gas, and the influence of off-gas temperature on BICO is marginal. BICO increases with the relative humidity (RH) in air supplied, but it increases about 0.5% when RH is larger than 30%. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1113 / 1119
页数:7
相关论文
empty
未找到相关数据