Intelligent Trajectory Planning in UAV-Mounted Wireless Networks: A Quantum-Inspired Reinforcement Learning Perspective

被引:31
|
作者
Li, Yuanjian [1 ]
Aghvami, A. Hamid [1 ]
Dong, Daoyi [2 ]
机构
[1] Kings Coll London, Ctr Telecommun Res, London WC2R 2LS, England
[2] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
关键词
UAV; trajectory planning; quantum computation; quantum-inspired reinforcement learning (QiRL); DESIGN;
D O I
10.1109/LWC.2021.3089876
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, we consider a wireless uplink transmission scenario in which an unmanned aerial vehicle (UAV) serves as an aerial base station collecting data from ground users. To optimize the expected sum uplink transmit rate without any prior knowledge of ground users (e.g., locations, channel state information and transmit power), the trajectory planning problem is optimized via the quantum-inspired reinforcement learning (QiRL) approach. Specifically, the QiRL method adopts novel probabilistic action selection policy and new reinforcement strategy, which are inspired by the collapse phenomenon and amplitude amplification in quantum computation theory, respectively. Numerical results demonstrate that the proposed QiRL solution can offer natural balancing between exploration and exploitation via ranking collapse probabilities of possible actions, compared to the traditional reinforcement learning approaches that are highly dependent on tuned exploration parameters.
引用
收藏
页码:1994 / 1998
页数:5
相关论文
共 50 条
  • [31] Energy-Efficient Multidimensional Trajectory of UAV-Aided IoT Networks With Reinforcement Learning
    Silvirianti
    Shin, Soo Young
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (19): : 19214 - 19226
  • [32] Continual Meta-Reinforcement Learning for UAV-Aided Vehicular Wireless Networks
    Marini, Riccardo
    Park, Sangwoo
    Simeone, Osvaldo
    Buratti, Chiara
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5664 - 5669
  • [33] Deep Reinforcement Learning Approach for Joint Trajectory Design in Multi-UAV IoT Networks
    Xu, Shu
    Zhan, Xiangyu
    Li, Chunguo
    Wang, Dongming
    Yang, Luxi
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (03) : 3389 - 3394
  • [34] Deep Reinforcement Learning for Trajectory Path Planning and Distributed Inference in Resource-Constrained UAV Swarms
    Dhuheir, Marwan
    Baccour, Emna
    Erbad, Aiman
    Al-Obaidi, Sinan Sabeeh
    Hamdi, Mounir
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (09) : 8185 - 8201
  • [35] Deep Reinforcement Learning-Based 3D Trajectory Planning for Cellular Connected UAV
    Liu, Xiang
    Zhong, Weizhi
    Wang, Xin
    Duan, Hongtao
    Fan, Zhenxiong
    Jin, Haowen
    Huang, Yang
    Lin, Zhipeng
    DRONES, 2024, 8 (05)
  • [36] UAV Path Planning Based on Reinforcement Learning for Fair Resource Allocation in UAV-Relayed Cellular Networks
    Lee, Wooyeob
    Park, Gyubong
    Joe, Inwhee
    INFORMATION SCIENCE AND APPLICATIONS, 2020, 621 : 53 - 63
  • [37] Computation Offloading and Trajectory Planning of Multi-UAV-Enabled MEC: A Knowledge-Assisted Multiagent Reinforcement Learning Approach
    Li, Xulong
    Qin, Yunhui
    Huo, Jiahao
    Wei, Huangfu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (05) : 7077 - 7088
  • [38] A Goal-Directed Trajectory Planning Using Active Inference in UAV-Assisted Wireless Networks
    Krayani, Ali
    Khan, Khalid
    Marcenaro, Lucio
    Marchese, Mario
    Regazzoni, Carlo
    SENSORS, 2023, 23 (15)
  • [39] Power Control and Trajectory Planning Based Interference Management for UAV-Assisted Wireless Sensor Networks
    Zhang, Shuo
    Shi, Shuo
    Gu, Shushi
    Gu, Xuemai
    IEEE ACCESS, 2020, 8 : 3453 - 3464
  • [40] Multi-UAV Adaptive Cooperative Formation Trajectory Planning Based on an Improved MATD3 Algorithm of Deep Reinforcement Learning
    Xing, Xiaojun
    Zhou, Zhiwei
    Li, Yan
    Xiao, Bing
    Xun, Yilin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (09) : 12484 - 12499