Spatiotemporal Dynamics of a Diffusive Leslie-Gower Predator-Prey Model with Ratio-Dependent Functional Response

被引:30
|
作者
Shi, Hong-Bo [1 ]
Ruan, Shigui [2 ]
Su, Ying [3 ]
Zhang, Jia-Fang [4 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R China
[2] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
[3] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
[4] Henan Univ, Sch Math & Informat Sci, Kaifeng 475001, Henan, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 05期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Diffusive predator-prey model; functional response; stability; Turing instability; Hopf bifurcation; Turing-Hopf bifurcation; TURING-HOPF BIFURCATIONS; QUALITATIVE-ANALYSIS; PATTERN-FORMATION; HETEROCLINIC BIFURCATION; BRUSSELATOR MODEL; SYSTEMS; INSTABILITY; STABILITY;
D O I
10.1142/S0218127415300141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of spatiotemporal dynamics of a diffusive Leslie-Gower predator-prey system with ratio-dependent Holling type III functional response under homogeneous Neumann boundary conditions. It is shown that the model exhibits spatial patterns via Turing (diffusion-driven) instability and temporal patterns via Hopf bifurcation. Moreover, the existence of spatiotemporal patterns is established via Turing-Hopf bifurcation at the degenerate points where the Turing instability curve and the Hopf bifurcation curve intersect. Various numerical simulations are also presented to illustrate the theoretical results.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Effects of Delay and Diffusion on the Dynamics of a Leslie-Gower Type Predator-Prey Model
    Zhang, Jia-Fang
    Yan, Xiang-Ping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (04):
  • [42] Asymptotic behavior and multiplicity for a diffusive Leslie-Gower predator-prey system with Crowley-Martin functional response
    Li, Haixia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (07) : 693 - 705
  • [43] SPATIOTEMPORAL DYNAMICS OF A DIFFUSIVE LESLIE-TYPE PREDATOR-PREY MODEL WITH BEDDINGTON-DEANGELIS FUNCTIONAL RESPONSE
    Li, Yan
    Zhang, Linyan
    Li, Dagen
    Shi, Hong-Bo
    JOURNAL OF BIOLOGICAL SYSTEMS, 2020, 28 (03) : 785 - 809
  • [44] DYNAMICS OF A LESLIE-GOWER PREDATOR-PREY MODEL WITH ADVECTION AND FREE BOUNDARIES
    Zhang, Yingshu
    Li, Yutian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (01): : 319 - 350
  • [45] Dynamical analysis of a pest management Leslie-Gower model with ratio-dependent functional response
    Xu, Jing
    Tian, Yuan
    Guo, Hongjian
    Song, Xinyu
    NONLINEAR DYNAMICS, 2018, 93 (02) : 705 - 720
  • [46] Global dynamics of a Leslie-Gower predator-prey model with square root response function
    He, Mengxin
    Li, Zhong
    APPLIED MATHEMATICS LETTERS, 2023, 140
  • [47] DYNAMICS OF A LESLIE-GOWER PREDATOR-PREY SYSTEM WITH HUNTING COOPERATION AND PREY HARVESTING
    Yao, Yong
    Liu, Lingling
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, : 4787 - 4815
  • [48] Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator-prey model with predator harvesting
    Gao, Xiaoyan
    Ishag, Sadia
    Fu, Shengmao
    Li, Wanjun
    Wang, Weiming
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 51
  • [49] Dynamics of a predator-prey model with Allee effect on prey and ratio-dependent functional response
    Flores, Jose D.
    Gonzalez-Olivares, Eduardo
    ECOLOGICAL COMPLEXITY, 2014, 18 : 59 - 66
  • [50] Dynamics of a Leslie-Gower predator-prey system with cross-diffusion
    Zou, Rong
    Guo, Shangjiang
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (65) : 1 - 33