Spatiotemporal Dynamics of a Diffusive Leslie-Gower Predator-Prey Model with Ratio-Dependent Functional Response

被引:30
|
作者
Shi, Hong-Bo [1 ]
Ruan, Shigui [2 ]
Su, Ying [3 ]
Zhang, Jia-Fang [4 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R China
[2] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
[3] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
[4] Henan Univ, Sch Math & Informat Sci, Kaifeng 475001, Henan, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 05期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Diffusive predator-prey model; functional response; stability; Turing instability; Hopf bifurcation; Turing-Hopf bifurcation; TURING-HOPF BIFURCATIONS; QUALITATIVE-ANALYSIS; PATTERN-FORMATION; HETEROCLINIC BIFURCATION; BRUSSELATOR MODEL; SYSTEMS; INSTABILITY; STABILITY;
D O I
10.1142/S0218127415300141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of spatiotemporal dynamics of a diffusive Leslie-Gower predator-prey system with ratio-dependent Holling type III functional response under homogeneous Neumann boundary conditions. It is shown that the model exhibits spatial patterns via Turing (diffusion-driven) instability and temporal patterns via Hopf bifurcation. Moreover, the existence of spatiotemporal patterns is established via Turing-Hopf bifurcation at the degenerate points where the Turing instability curve and the Hopf bifurcation curve intersect. Various numerical simulations are also presented to illustrate the theoretical results.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Bifurcation analysis of a diffusive ratio-dependent predator-prey model
    Song, Yongli
    Zou, Xingfu
    NONLINEAR DYNAMICS, 2014, 78 (01) : 49 - 70
  • [22] Spatiotemporal dynamics of a delayed diffusive ratio-dependent predator-prey model with fear effect
    Zhang, Xuebing
    An, Qi
    Wang, Ling
    NONLINEAR DYNAMICS, 2021, 105 (04) : 3775 - 3790
  • [23] Complex dynamics induced by harvesting rate and delay in a diffusive Leslie-Gower predator-prey model
    Jiang, Heping
    AIMS MATHEMATICS, 2023, 8 (09): : 20718 - 20730
  • [24] Dynamics in a diffusive predator-prey system with ratio-dependent predator influence
    Zou, Rong
    Guo, Shangjiang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (04) : 1237 - 1258
  • [25] On a Leslie-Gower predator-prey model incorporating a prey refuge
    Chen, Fengde
    Chen, Liujuan
    Xie, Xiangdong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) : 2905 - 2908
  • [26] Dynamics in a diffusive predator-prey system with double Allee effect and modified Leslie-Gower scheme
    Li, Haixia
    Yang, Wenbin
    Wei, Meihua
    Wang, Aili
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2022, 15 (03)
  • [27] Dynamics of a Leslie-Gower predator-prey model with additive Allee effect
    Cai, YongLi
    Zhao, Caidi
    Wang, Weiming
    Wang, Jinfeng
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (07) : 2092 - 2106
  • [28] Effect of weak prey in Leslie-Gower predator-prey model
    Mohammadi, Hossein
    Mahzoon, Mojtaba
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 224 : 196 - 204
  • [29] Dynamics of a Stage-Structured Leslie-Gower Predator-Prey Model
    Huo, Hai-Feng
    Wang, Xiaohong
    Castillo-Chavez, Carlos
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [30] Dynamics of a diffusive predator-prey system with ratio-dependent functional response and time delay
    Jiang, Xin
    Zhang, Ran
    She, Zhikun
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2020, 13 (06)