Spatiotemporal Dynamics of a Diffusive Leslie-Gower Predator-Prey Model with Ratio-Dependent Functional Response

被引:30
|
作者
Shi, Hong-Bo [1 ]
Ruan, Shigui [2 ]
Su, Ying [3 ]
Zhang, Jia-Fang [4 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R China
[2] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
[3] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
[4] Henan Univ, Sch Math & Informat Sci, Kaifeng 475001, Henan, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 05期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Diffusive predator-prey model; functional response; stability; Turing instability; Hopf bifurcation; Turing-Hopf bifurcation; TURING-HOPF BIFURCATIONS; QUALITATIVE-ANALYSIS; PATTERN-FORMATION; HETEROCLINIC BIFURCATION; BRUSSELATOR MODEL; SYSTEMS; INSTABILITY; STABILITY;
D O I
10.1142/S0218127415300141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of spatiotemporal dynamics of a diffusive Leslie-Gower predator-prey system with ratio-dependent Holling type III functional response under homogeneous Neumann boundary conditions. It is shown that the model exhibits spatial patterns via Turing (diffusion-driven) instability and temporal patterns via Hopf bifurcation. Moreover, the existence of spatiotemporal patterns is established via Turing-Hopf bifurcation at the degenerate points where the Turing instability curve and the Hopf bifurcation curve intersect. Various numerical simulations are also presented to illustrate the theoretical results.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A modified Leslie-Gower predator-prey model with ratio-dependent functional response and alternative food for the predator
    Flores, Jose D.
    Gonzalez-Olivares, Eduardo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2313 - 2328
  • [2] Dynamics of a diffusive Leslie-Gower predator-prey system with ratio-dependent Holling III functional response
    Chang, Xiaoyuan
    Zhang, Jimin
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [3] Dynamics in a diffusive modified Leslie-Gower predator-prey model with time delay and prey harvesting
    Yang, Ruizhi
    Zhang, Chunrui
    NONLINEAR DYNAMICS, 2017, 87 (02) : 863 - 878
  • [4] Global Bifurcation in a Modified Leslie-Gower Predator-Prey Model
    Tian, Jialu
    Liu, Ping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (02):
  • [5] Dynamics of a ratio-dependent Leslie-Gower predator-prey model with Allee effect and fear effect
    Li, Yajing
    He, Mengxin
    Li, Zhong
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 201 : 417 - 439
  • [6] Spatiotemporal dynamics of a Leslie-Gower predator-prey model incorporating a prey refuge
    Guan, Xiaona
    Wang, Weiming
    Cai, Yongli
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) : 2385 - 2395
  • [7] Global boundedness and dynamics of a diffusive predator-prey model with modified Leslie-Gower functional response and density-dependent motion
    Mi, Ying-Yuan
    Song, Cui
    Wang, Zhi-Cheng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [8] Positive solutions of a diffusive Leslie-Gower predator-prey model with Bazykin functional response
    Zhou, Jun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (01): : 1 - 18
  • [9] Spatiotemporal Dynamics Induced by Michaelis-Menten Type Prey Harvesting in a Diffusive Leslie-Gower Predator-Prey Model
    Zuo, Wei-Qin
    Ma, Zhan-Ping
    Cheng, Zhi-Bo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (14):
  • [10] Turing instability and Hopf bifurcation in a diffusive Leslie-Gower predator-prey model
    Peng, Yahong
    Liu, Yangyang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (14) : 4158 - 4170