Single-cell transcriptome sequencing on the Nanopore platform with ScNapBar

被引:13
|
作者
Wang, Qi [1 ]
Boenigk, Sven [1 ]
Boehm, Volker [2 ,3 ]
Gehring, Niels [2 ,3 ]
Altmueller, Janine [4 ]
Dieterich, Christoph [1 ,5 ,6 ]
机构
[1] Univ Hosp Heidelberg, Klaus Tschira Inst Integrat Computat Cardiol, D-69120 Heidelberg, Germany
[2] Univ Cologne, Inst Genet, D-50674 Cologne, Germany
[3] Univ Cologne, Ctr Mol Med Cologne CMMC, D-50937 Cologne, Germany
[4] Univ Cologne, Cologne Ctr Genom CCG, D-50931 Cologne, Germany
[5] Univ Hosp Heidelberg, Dept Internal Med Cardiol Angiol & Pneumol 3, D-69120 Heidelberg, Germany
[6] German Ctr Cardiovasc Res DZHK, Partner Site Heidelberg Mannheim, D-69120 Heidelberg, Germany
关键词
Bayesian; 10x genomics; cell barcode assignment; nonsense-mediated mRNA decay (NMD); EXPRESSION;
D O I
10.1261/rna.078154.120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The current ecosystem of single-cell RNA-seq platforms is rapidly expanding, but robust solutions for single-cell and single-molecule full-length RNA sequencing are virtually absent. A high-throughput solution that covers all aspects is necessary to study the complex life of mRNA on the single-cell level. The Nanopore platform offers long read sequencing and can be integrated with the popular single-cell sequencing method on the 10x Chromium platform. However, the high error-rate of Nanopore reads poses a challenge in downstream processing (e.g., for cell barcode assignment). We propose a solution to this particular problem by using a hybrid sequencing approach on Nanopore and Illumina platforms. Our software ScNapBar enables cell barcode assignment with high accuracy, especially if sequencing saturation is low. ScNapBar uses unique molecular identifier (UMI) or Naive Bayes probabilistic approaches in the barcode assignment, depending on the available Illumina sequencing depth. We have benchmarked the two approaches on simulated and real Nanopore data sets. We further applied ScNapBar to pools of cells with an active or a silenced nonsense-mediated RNA decay pathway. Our Nanopore read assignment distinguishes the respective cell populations and reveals characteristic nonsense-mediated mRNA decay events depending on cell status.
引用
收藏
页码:763 / 770
页数:8
相关论文
共 50 条
  • [41] Dissecting human gliomas by single-cell RNA sequencing
    Tirosh, Itay
    Suva, Mario L.
    NEURO-ONCOLOGY, 2018, 20 (01) : 37 - 43
  • [42] Single-cell RNA sequencing in juvenile idiopathic arthritis
    Luo, Xiwen
    Tang, Xuemei
    GENES & DISEASES, 2024, 11 (02) : 633 - 644
  • [43] Single-cell sequencing applications in acute myeloid leukemia
    Lecornec, Nicolas
    Duchmann, Matthieu
    Itzykson, Raphael
    LEUKEMIA & LYMPHOMA, 2025, 66 (02) : 175 - 189
  • [44] High-throughput single-cell RNA sequencing
    Denyer, Tom
    Timmermans, Marja C. P.
    TRENDS IN PLANT SCIENCE, 2022, 27 (01) : 104 - 105
  • [45] Single-cell sequencing: promises and challenges for human genetics
    Sreenivasan, Varun K. A.
    Henck, Jana
    Spielmann, Malte
    MEDIZINISCHE GENETIK, 2022, 34 (04) : 261 - 273
  • [46] The Power of Single-Cell RNA Sequencing in eQTL Discovery
    Maria, Maleeha
    Pouyanfar, Negar
    Ord, Tiit
    Kaikkonen, Minna U.
    GENES, 2022, 13 (03)
  • [47] Sample-multiplexing approaches for single-cell sequencing
    Zhang, Yulong
    Xu, Siwen
    Wen, Zebin
    Gao, Jinyu
    Li, Shuang
    Weissman, Sherman M.
    Pan, Xinghua
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2022, 79 (08)
  • [48] Single-Cell RNA Sequencing in Parkinson's Disease
    Ma, Shi-Xun
    Lim, Su Bin
    BIOMEDICINES, 2021, 9 (04)
  • [49] Single-cell barcoding and sequencing using droplet microfluidics
    Zilionis, Rapolas
    Nainys, Juozas
    Veres, Adrian
    Savova, Virginia
    Zemmour, David
    Klein, Allon M.
    Mazutis, Linas
    NATURE PROTOCOLS, 2017, 12 (01) : 44 - 73
  • [50] A single-cell transcriptome atlas of the aging human and macaque retina
    Yi, Wenyang
    Lu, Yufeng
    Zhong, Suijuan
    Zhang, Mei
    Sun, Le
    Dong, Hao
    Wang, Mengdi
    Wei, Min
    Xie, Haohuan
    Qu, Hongqiang
    Peng, Rongmei
    Hong, Jing
    Yao, Ziqin
    Tong, Yunyun
    Wang, Wei
    Ma, Qiang
    Liu, Zeyuan
    Ma, Yuqian
    Li, Shouzhen
    Yin, Chonghai
    Liu, Jianwei
    Ma, Chao
    Wang, Xiaoqun
    Wu, Qian
    Xue, Tian
    NATIONAL SCIENCE REVIEW, 2021, 8 (04)