Experimental study on the mechanical properties of different fiber-reinforced seawater sea-sand engineered cementitious composites

被引:28
|
作者
Lin, Chenlong [1 ]
Wang, Siyu [1 ]
Chen, Miao [1 ]
Lu, Yiyan [1 ]
机构
[1] Wuhan Univ, Sch Civil Engn, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
ECC; Seawater; Sea-sand; Toughness index; Residual strength index; CONCRETE; PERFORMANCE; BEHAVIOR; DURABILITY; BASALT; BEAMS; BARS; PVA;
D O I
10.1016/j.conbuildmat.2021.124562
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Engineered cementitious composites (ECCs) are a type of fiber-reinforced cementitious composite featuring tensile multiple-cracking and strain-hardening behaviors. Fiber-reinforced seawater sea-sand engineered cementitious composites (SS-ECCs) are a new type of ECC used for construction in coastal and marine areas lacking fresh water and river or manufactured sand, offering SS-ECCs much potential and socioeconomic benefit. In this study, SS-ECCs were prepared with artificial seawater, natural sea-sand, different fiber types (polyvinyl alcohol (PVA) fibers, polyethylene (PE) fibers, polypropylene (PP) fibers) and different fiber lengths (6, 9, 12, and 18 mm). Compression, flexural, tensile and bending tests showed that the compressive and flexural strengths of SS-ECCs initially increased and then decreased with increasing fiber length. A fiber length of 12 mm yielded the maximum strength. The 12-mm PE fiber-reinforced SS-ECC displayed the largest ultimate tensile stress of 4.047 MPa and the largest ultimate tensile strain of 3.023%, and its flexural and tensile toughness indexes and residual flexural and tensile strength indexes all satisfied the corresponding requirements for an ideal elastoplastic material. In contrast, the 9 mm and 12 mm PVA fiber-reinforced SS-ECCs satisfied the requirements for an ideal elastoplastic material only partially. The relationship between the ultimate flexural deflection and the ultimate tensile strain is discussed, and the error of the formula between them is analyzed. All the findings can facilitate the future design and application of SS-ECCs in coastal and marine structures.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Compression-shear performance and failure criteria of seawater sea-sand engineered cementitious composites with polyethylene fibers
    Liao, Qiao
    Su, Yuanrui
    Yu, Jiangtao
    Yu, Kequan
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 345
  • [22] Mechanical properties of seawater sea-sand concrete reinforced with discrete BFRP-Needles
    Dong, Zhiqiang
    Wu, Gang
    Zhu, Hong
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 206 (432-441) : 432 - 441
  • [23] High-strength seawater sea-sand Engineered Cementitious Composites (SS-ECC): Mechanical performance and probabilistic modeling
    Huang, Bo-Tao
    Wu, Jia-Qi
    Yu, Jing
    Dai, Jian-Guo
    Leung, Christopher K. Y.
    CEMENT & CONCRETE COMPOSITES, 2020, 114
  • [24] Experimental study on the mechanical properties of reinforced engineered cementitious composites
    Yang, Dan
    Wang, Zhiyuan
    Guo, Rui
    Yu, Zhixiang
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20
  • [25] Effect of morphological parameters of natural sand on mechanical properties of engineered cementitious composites
    Wu, Hao-Liang
    Yu, Jing
    Zhang, Duo
    Zheng, Jun-Xing
    Li, Victor C.
    CEMENT & CONCRETE COMPOSITES, 2019, 100 : 108 - 119
  • [26] Development of basalt fiber engineered cementitious composites and its mechanical properties
    Xu, Mingfeng
    Song, Song
    Feng, Lei
    Zhou, Jian
    Li, Hui
    Li, Victor C.
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 266
  • [27] Compression Behavior of Seawater and Sea-Sand Concrete Reinforced with Fiber and Glass Fiber-Reinforced Polymer Bars
    Zhou, Jikai
    He, Xu
    Shen, Wei
    ACI STRUCTURAL JOURNAL, 2020, 117 (04) : 103 - 114
  • [28] Bond-Slip Model of Corrosion-Resistant Rebar and Fiber-Reinforced Seawater Sea-Sand Concrete
    Zheng, Hao
    Wang, Wei
    Gao, Chengqiang
    Yuan, Jian
    Feng, Jiang
    JOURNAL OF TESTING AND EVALUATION, 2024, 52 (01) : 42 - 56
  • [29] Durability Enhancement of Basalt Fiber-Reinforced Polymer-Seawater Sea-Sand Concrete Beam by Alkalinity Regulation
    Guo, Shuaicheng
    Xu, Zhenqin
    Zhu, Deju
    ACI STRUCTURAL JOURNAL, 2024, 121 (04) : 47 - 62
  • [30] Experimental Investigation on the Mechanical Properties and Microstructure of Basalt Fiber Reinforced Engineered Cementitious Composite
    Du, Qiang
    Cai, Changlu
    Lv, Jing
    Wu, Jiao
    Pan, Ting
    Zhou, Jie
    MATERIALS, 2020, 13 (17)