A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing

被引:141
|
作者
Cui, Peng [1 ]
Lin, Qiang [1 ,2 ]
Ding, Feng [1 ]
Xin, Chengqi [1 ,2 ]
Gong, Wei [1 ,2 ]
Zhang, Lingfang [1 ,2 ]
Geng, Jianing [1 ]
Zhang, Bing [1 ]
Yu, Xiaomin [1 ]
Yang, Jin [1 ]
Hu, Songnian [1 ]
Yu, Jun [1 ]
机构
[1] Chinese Acad Sci, Beijing Inst Genom, CAS Key Lab Genome Sci & Informat, Beijing 100029, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100029, Peoples R China
关键词
Ribominus; RNA-seq; mRNA-seq; CELL TRANSCRIPTOME; HUMAN PROMOTERS; MESSENGER-RNA; REVEALS; GENES;
D O I
10.1016/j.ygeno.2010.07.010
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To compare the two RNA-sequencing protocols, ribo-minus RNA-sequencing (rmRNA-seq) and polyA-selected RNA-sequencing (mRNA-seq), we acquired transcriptomic data-52 and 32 million alignable reads of 35 bases in length-from the mouse cerebrum, respectively. We found that a higher proportion, 44% and 25%, of the uniquely alignable rmRNA-seq reads, is in intergenic and intronic regions, respectively, as compared to 23% and 15% from the mRNA-seq dataset. Further analysis made an additional discovery of transcripts of protein-coding genes (such as Histone. Heg1, and Dux), ncRNAs, snoRNAs, snRNAs, and novel ncRNAs as well as repeat elements in rmRNA-seq dataset. This result suggests that rmRNA-seq method should detect more polyA- or bimorphic transcripts. Finally, through comparative analyses of gene expression profiles among multiple datasets, we demonstrated that different RNA sample preparations may result in significant variations in gene expression profiles. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:259 / 265
页数:7
相关论文
共 50 条
  • [1] Comparison of RNA-Sequencing Methods for Degraded RNA
    Ura, Hiroki
    Niida, Yo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (11)
  • [2] RNA-sequencing in toxicogenomics
    Kleinjans, J.
    TOXICOLOGY LETTERS, 2015, 238 (02) : S35 - S36
  • [3] HCC: RNA-Sequencing in Cirrhosis
    Wang, Haoyu
    Shi, Wenjie
    Lu, Jing
    Liu, Yuan
    Zhou, Wei
    Yu, Zekun
    Qin, Shengying
    Fan, Junwei
    BIOMOLECULES, 2023, 13 (01)
  • [4] RNA-sequencing from single nuclei
    Grindberg, Rashel V.
    Yee-Greenbaum, Joyclyn L.
    McConnell, Michael J.
    Novotny, Mark
    O'Shaughnessy, Andy L.
    Lambert, Georgina M.
    Arauzo-Bravo, Marcos J.
    Lee, Jun
    Fishman, Max
    Robbins, Gillian E.
    Lin, Xiaoying
    Venepally, Pratap
    Badger, Jonathan H.
    Galbraith, David W.
    Gage, Fred H.
    Lasken, Roger S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (49) : 19802 - 19807
  • [5] Clinical impact of RNA-sequencing in diagnostics
    De Cock, Laurenz
    D'haenens, Erika
    Vergult, Sarah
    Vantomme, Lies
    Dheedene, Annelies
    de Putter, Robin
    Van Damme, Tim
    Sourbron, Jo
    Callewaert, Bert
    Vanakker, Olivier
    Menten, Bjorn
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 648 - 648
  • [6] Standardization and Interpretation of RNA-sequencing for Transplantation
    Thareja, Gaurav
    Suryawanshi, Hemant
    Luo, Xunrong
    Muthukumar, Thangamani
    TRANSPLANTATION, 2023, 107 (10) : 2155 - 2167
  • [7] Nonparametric clustering of RNA-sequencing data
    Lozano, Gabriel
    Atallah, Nadia
    Levine, Michael
    STATISTICAL ANALYSIS AND DATA MINING, 2023, 16 (06) : 547 - 559
  • [8] Single-Cell RNA-Sequencing in Glioma
    Eli Johnson
    Katherine L. Dickerson
    Ian D. Connolly
    Melanie Hayden Gephart
    Current Oncology Reports, 2018, 20
  • [9] Adaptive sampling for nanopore direct RNA-sequencing
    Naarmann-de Vries, Isabel S.
    Gjerga, Enio
    Gandor, Catharina L. A.
    Dieterich, Christoph
    RNA, 2023, 29 (12) : 1939 - 1949
  • [10] Bias detection and correction in RNA-Sequencing data
    Wei Zheng
    Lisa M Chung
    Hongyu Zhao
    BMC Bioinformatics, 12