Structure of the carbon isotope excursion in a high-resolution lacustrine Paleocene-Eocene Thermal Maximum record from central China

被引:43
作者
Chen, Zuoling [1 ,2 ]
Wang, Xu [1 ]
Hu, Jianfang [3 ]
Yang, Shiling [1 ]
Zhu, Min [4 ]
Dong, Xinxin [1 ]
Tang, Zihua [1 ]
Peng, Ping'an [3 ]
Ding, Zhongli [1 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Cenozo Geol & Environm, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Guangzhou Inst Geochem, Guangzhou 510640, Guangdong, Peoples R China
[4] Chinese Acad Sci, Inst Vertebrate Paleontol & Paleoanthropol, Key Lab Vertebrate Evolut & Human Origins, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
PETM; carbon isotope excursion; positive feedback; lacustrine; Nanyang Basin; ORGANIC-MATTER; BIGHORN BASIN; METHANE HYDRATE; STABLE-ISOTOPE; GLOBAL CARBON; CLIMATE; MARINE; TERRESTRIAL; SEDIMENTS; RELEASE;
D O I
10.1016/j.epsl.2014.10.027
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The carbon isotope excursion (CIE) associated with the Paleocene-Eocene Thermal Maximum (PETM) has been recognized for the first time in the micritic carbonate, total organic carbon (TOC) and black carbon (BC) contained within the lacustrine sediments from the Nanyang Basin, central China. The remarkably large excursion (similar to-6 parts per thousand) in the delta C-13(TOC) and delta C-13(BC) values is possibly attributable to increased humidity and elevated pCO(2) concentration. The similar to-4 parts per thousand CIE recorded in the delta C-13(calcite), reflecting the average isotope change of the watershed system, is consistent with that observed in planktonic foraminifera. This correspondence suggests that the true magnitude of the carbon isotope excursion in the ocean-atmosphere system is likely close to -4 parts per thousand. The similar to 10 m excursion onset in our multi-proxy delta C-13 records demonstrates that the large input of C-13-depleted carbon into the ocean-atmosphere system was not geologically instantaneous. Despite difference and somewhat smoothness in detailed pattern of the CIE due to localized controls on different substrates, inorganic and organic delta C-13 data generally depict a gradual excursion onset at least over timescales of thousands of years. In addition, continental temperature reconstruction, based on the distribution of membrane lipids of bacteria, suggests a warming of similar to 4 degrees C prior to the PETM and similar to 7 degrees C increase in temperature during the PETM. The temperature data are overall similar in pattern and trend to the delta C-13 change across the PETM. These observations, combined with pre-CIE warming, are in line with the idea that C-13-depleted carbon release operated as a positive feedback to temperature, suggesting supply from one or more large organic carbon reservoirs on Earth's surface. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:331 / 340
页数:10
相关论文
共 88 条
[1]   Astronomical climate control on paleosol stacking patterns in the upper Paleocene-lower Eocene Willwood Formation, Bighorn Basin, Wyoming [J].
Aziz, Hayfaa Abdul ;
Hilgen, Frits J. ;
van Luijk, Gerson M. ;
Sluijs, Appy ;
Kraus, Mary J. ;
Pares, Josep M. ;
Gingerich, Philip D. .
GEOLOGY, 2008, 36 (07) :531-534
[2]   Chemostratigraphic implications of spatial variation in the Paleocene-Eocene Thermal Maximum carbon isotope excursion, SE Bighorn Basin, Wyoming [J].
Baczynski, Allison A. ;
McInerney, Francesca A. ;
Wing, Scott L. ;
Kraus, Mary J. ;
Bloch, Jonathan I. ;
Boyer, Doug M. ;
Secord, Ross ;
Morse, Paul E. ;
Fricke, Henry C. .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2013, 14 (10) :4133-4152
[3]   Controls of δ13C-DIC in lakes:: Geochemistry, lake metabolism, and morphometry [J].
Bade, DL ;
Carpenter, SR ;
Cole, JJ ;
Hanson, PC ;
Hesslein, RH .
LIMNOLOGY AND OCEANOGRAPHY, 2004, 49 (04) :1160-1172
[4]   Mechanisms of climate warming at the end of the Paleocene [J].
Bains, S ;
Corfield, RM ;
Norris, RD .
SCIENCE, 1999, 285 (5428) :724-727
[5]   Influence of provenance and preservation on the carbon isotope variations of dispersed organic matter in ancient floodplain sediments [J].
Bataille, Clement P. ;
Mastalerz, Maria ;
Tipple, Brett J. ;
Bowen, Gabriel J. .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2013, 14 (11) :4874-4891
[6]   THE INFLUENCE OF LAKE MORPHOMETRY ON SEDIMENT FOCUSING [J].
BLAIS, JM ;
KALFF, J .
LIMNOLOGY AND OCEANOGRAPHY, 1995, 40 (03) :582-588
[7]   Palaeocene early Eocene climatic evolution in the Tethyan realm: clay mineral evidence [J].
Bolle, MP ;
Adatte, T .
CLAY MINERALS, 2001, 36 (02) :249-261
[8]   Up in smoke: A role for organic carbon feedbacks in Paleogene hyperthermals [J].
Bowen, Gabriel J. .
GLOBAL AND PLANETARY CHANGE, 2013, 109 :18-29
[9]   A humid climate state during the Palaeocene/Eocene thermal maximum [J].
Bowen, GJ ;
Beerling, DJ ;
Koch, PL ;
Zachos, JC ;
Quattlebaum, T .
NATURE, 2004, 432 (7016) :495-499
[10]   The influence of authigenic clay formation on the mineralogy and stable isotopic record of lacustrine carbonates [J].
Bristow, Thomas F. ;
Kennedy, Martin J. ;
Morrison, Keith D. ;
Mrofka, David D. .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2012, 90 :64-82