Flexible Modeling of Dependence in Volatility Processes

被引:8
作者
Kalli, Maria [1 ]
Griffin, Jim [2 ]
机构
[1] Canterbury Christ Church Univ, Sch Business, Canterbury CT1 1QU, Kent, England
[2] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England
关键词
MCMC; Aggregation; Dirichlet process; Bayesian nonparametric; Long-range dependence; Stochastic volatility; CHAIN MONTE-CARLO; STOCHASTIC VOLATILITY; LONG MEMORY; LIKELIHOOD INFERENCE; DYNAMIC-MODELS; MCMC; AGGREGATION; DIRICHLET; LEVERAGE; RETURNS;
D O I
10.1080/07350015.2014.925457
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article proposes a novel stochastic volatility (SV) model that draws from the existing literature on autoregressive SV models, aggregation of autoregressive processes, and Bayesian nonparametric modeling to create a SV model that can capture long-range dependence. The volatility process is assumed to be the aggregate of autoregressive processes, where the distribution of the autoregressive coefficients is modeled using a flexible Bayesian approach. The model provides insight into the dynamic properties of the volatility. An efficient algorithm is defined which uses recently proposed adaptive Monte Carlo methods. The proposed model is applied to the daily returns of stocks.
引用
收藏
页码:102 / 113
页数:12
相关论文
共 35 条
  • [21] Estimating long memory in volatility
    Hurvich, CM
    Moulines, E
    Soulier, P
    [J]. ECONOMETRICA, 2005, 73 (04) : 1283 - 1328
  • [22] Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models
    Ishwaran, H
    Zarepour, M
    [J]. BIOMETRIKA, 2000, 87 (02) : 371 - 390
  • [23] Bayesian semiparametric stochastic volatility modeling
    Jensen, Mark J.
    Maheu, John M.
    [J]. JOURNAL OF ECONOMETRICS, 2010, 157 (02) : 306 - 316
  • [24] Stochastic volatility: Likelihood inference and comparison with ARCH models
    Kim, S
    Shephard, N
    Chib, S
    [J]. REVIEW OF ECONOMIC STUDIES, 1998, 65 (03) : 361 - 393
  • [25] ADAPTIVE GIBBS SAMPLERS AND RELATED MCMC METHODS
    Latuszynski, Krzysztof
    Roberts, Gareth O.
    Rosenthal, Jeffrey S.
    [J]. ANNALS OF APPLIED PROBABILITY, 2013, 23 (01) : 66 - 98
  • [26] Leverage, heavy-tails and correlated jumps in stochastic volatility models
    Nakajima, Jouchi
    Omori, Yasuhiro
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (06) : 2335 - 2353
  • [27] Markov chain sampling methods for Dirichlet process mixture
    Neal, RM
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (02) : 249 - 265
  • [28] Stochastic volatility with leverage: Fast and efficient likelihood inference
    Omori, Yasuhiro
    Chib, Siddhartha
    Shephard, Neil
    Nakajima, Jouchi
    [J]. JOURNAL OF ECONOMETRICS, 2007, 140 (02) : 425 - 449
  • [29] Richardson S., 2001, SCANDINAVIAN J STAT, P355
  • [30] Examples of Adaptive MCMC
    Roberts, Gareth O.
    Rosenthal, Jeffrey S.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (02) : 349 - 367