A Runge-Kutta-Nystrom pair for the numerical integration of perturbed oscillators

被引:23
作者
de Vyver, HV
机构
关键词
explicit Runge-Kutta-Nystrom methods; embedded pairs; variable step-size algorithms; initial value problems; oscillating solutions;
D O I
10.1016/j.cpc.2004.12.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
New Runge-Kutta-Nystrom methods especially designed for the numerical integration of perturbed oscillators are presented in this paper. They are capable of exactly integrating the harmonic or unperturbed oscillator. We construct an embedded 4(3) RKN pair that is based on the FSAL property. The new method is much more efficient than previously derived RKN methods for some subclasses of problems. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:129 / 142
页数:14
相关论文
共 28 条
[21]  
SIMOS TE, 1996, APPL MATH LETT, V6, P61
[22]   STABILIZATION OF COWELLS METHOD [J].
STIEFEL, E ;
BETTIS, DG .
NUMERISCHE MATHEMATIK, 1969, 13 (02) :154-&
[23]   Optimized Runge-Kutta pairs for problems with oscillating solutions [J].
Tsitouras, C ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 147 (02) :397-409
[24]   Exponentially-fitted explicit Runge-Kutta methods [J].
Vanden Berghe, G ;
De Meyer, H ;
Van Daele, M ;
Van Hecke, T .
COMPUTER PHYSICS COMMUNICATIONS, 1999, 123 (1-3) :7-15
[25]   DIAGONALLY IMPLICIT RUNGE-KUTTA-NYSTROM METHODS FOR OSCILLATORY PROBLEMS [J].
VANDERHOUWEN, PJ ;
SOMMEIJER, BP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (02) :414-429
[26]   EXPLICIT RUNGE-KUTTA (-NYSTROM) METHODS WITH REDUCED PHASE ERRORS FOR COMPUTING OSCILLATING SOLUTIONS [J].
VANDERHOUWEN, PJ ;
SOMMEIJER, BP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (03) :595-617
[27]   PHASE-LAG ANALYSIS OF IMPLICIT RUNGE-KUTTA METHODS [J].
VANDERHOUWEN, PJ ;
SOMMEIJER, BP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (01) :214-229
[28]   STABILIZATION OF COWELLS CLASSICAL FINITE-DIFFERENCE METHOD FOR NUMERICAL-INTEGRATION [J].
VANDOOREN, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1974, 16 (02) :186-192