Mechanisms of Oxidized LDL-Mediated Endothelial Dysfunction and Its Consequences for the Development of Atherosclerosis

被引:137
作者
Jiang, Hui [1 ]
Zhou, Yongwen [2 ]
Nabavi, Seyed M. [3 ]
Sahebkar, Amirhossein [4 ,5 ]
Little, Peter J. [6 ]
Xu, Suowen [2 ]
Weng, Jianping [2 ]
Ge, Jianjun [1 ]
机构
[1] Univ Sci & Technol China USTC, Affiliated Hosp 1, Anhui Prov Engn Res Ctr Cardiopulm & Vasc Mat, Dept Cardiothorac Surg,Div Life Sci & Med, Hefei, Peoples R China
[2] Univ Sci & Technol China USTC, Affiliated Hosp 1, Clin Res Hosp,Chinese Acad Sci Hefei, Inst Endocrine & Metab Dis,Dept Endocrinol,Div Lif, Hefei, Peoples R China
[3] Adv Med Pharm BIOTEC, Benevento, Italy
[4] Mashhad Univ Med Sci, Pharmaceut Technol Inst, Biotechnol Res Ctr, Mashhad, Iran
[5] Mashhad Univ Med Sci, Appl Biomed Res Ctr, Mashhad, Iran
[6] Univ Sunshine Coast, Sunshine Coast Hlth Inst, Sch Hlth & Behav Sci, Birtinya, Qld, Australia
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
oxidized LDL; endothelial dysfunction; atherosclerosis; inflammation; oxidation; LOW-DENSITY-LIPOPROTEIN; CELL DYSFUNCTION; DOWN-REGULATION; INJURY; INFLAMMATION; SENESCENCE; OXIDATION; KNOCKDOWN; PROTECTS; PATHWAY;
D O I
10.3389/fcvm.2022.925923
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Atherosclerosis is an immuno-metabolic disease involving chronic inflammation, oxidative stress, epigenetics, and metabolic dysfunction. There is compelling evidence suggesting numerous modifications including the change of the size, density, and biochemical properties in the low-density lipoprotein (LDL) within the vascular wall. These modifications of LDL, in addition to LDL transcytosis and retention, contribute to the initiation, development and clinical consequences of atherosclerosis. Among different atherogenic modifications of LDL, oxidation represents a primary modification. A series of pathophysiological changes caused by oxidized LDL (oxLDL) enhance the formation of foam cells and atherosclerotic plaques. OxLDL also promotes the development of fatty streaks and atherogenesis through induction of endothelial dysfunction, formation of foam cells, monocyte chemotaxis, proliferation and migration of SMCs, and platelet activation, which culminate in plaque instability and ultimately rupture. This article provides a concise review of the formation of oxLDL, enzymes mediating LDL oxidation, and the receptors and pro-atherogenic signaling pathways of oxLDL in vascular cells. The review also explores how oxLDL functions in different stages of endothelial dysfunction and atherosclerosis. Future targeted pathways and therapies aiming at reducing LDL oxidation and/or lowering oxLDL levels and oxLDL-mediated pro-inflammatory responses are also discussed.
引用
收藏
页数:11
相关论文
共 83 条
[1]   Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell [J].
Bai, Tao ;
Li, Mingxing ;
Liu, Yuanfeng ;
Qiao, Zhentao ;
Wang, Zhiwei .
FREE RADICAL BIOLOGY AND MEDICINE, 2020, 160 :92-102
[2]   The effect of myeloperoxidase-oxidized LDL on THP-1 macrophage polarization and repolarization [J].
Bazzi, Samer ;
Frangie, Christian ;
Azar, Eliana ;
Daher, Jalil .
INNATE IMMUNITY, 2022, 28 (02) :91-103
[3]   Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis [J].
Bian, Weihua ;
Jing, Xiaohong ;
Yang, Zhiyu ;
Shi, Zhen ;
Chen, Ruiyao ;
Xu, Aili ;
Wang, Na ;
Jiang, Jing ;
Yang, Cheng ;
Zhang, Daolai ;
Li, Lan ;
Wang, Haiyan ;
Wang, Juan ;
Sun, Yeying ;
Zhang, Chunxiang .
AGING-US, 2020, 12 (07) :6385-6400
[4]   LIPOPROTEIN METABOLISM IN THE MACROPHAGE - IMPLICATIONS FOR CHOLESTEROL DEPOSITION IN ATHEROSCLEROSIS [J].
BROWN, MS ;
GOLDSTEIN, JL .
ANNUAL REVIEW OF BIOCHEMISTRY, 1983, 52 :223-261
[5]  
Chen DF, 2021, J CARDIOVASC PHARM, V77, P480, DOI 10.1097/FJC.0000000000000974
[6]   Inhibition of the ox-LDL-Induced Pyroptosis by FGF21 of Human Umbilical Vein Endothelial Cells Through the TET2-UQCRC1-ROS Pathway [J].
Chen, Jiao-Jiao ;
Tao, Jun ;
Zhang, Xiao-Lei ;
Xia, Lin-Zhen ;
Zeng, Jun-Fa ;
Zhang, Hai ;
Wei, Dang-Heng ;
Lv, Yun-Cheng ;
Li, Guo-Hua ;
Wang, Zuo .
DNA AND CELL BIOLOGY, 2020, 39 (04) :661-670
[7]   MicroRNA-20a protects human aortic endothelial cells from Ox-LDL-induced inflammation through targeting TLR4 and TXNIP signaling [J].
Chen, Mantian ;
Li, Wei ;
Zhang, Yi ;
Yang, Jieying .
BIOMEDICINE & PHARMACOTHERAPY, 2018, 103 :191-197
[8]   Harnessing polyphenol power by targeting eNOS for vascular diseases [J].
Das, Mamali ;
Devi, Kasi Pandima ;
Belwal, Tarun ;
Devkota, Hari Prasad ;
Tewari, Devesh ;
Sahebnasagh, Adeleh ;
Nabavi, Seyed Fazel ;
Kashani, Hamid Reza Khayat ;
Rasekhian, Mahsa ;
Xu, Suowen ;
Amirizadeh, Mehran ;
Amini, Kiumarth ;
Banach, Maciej ;
Xiao, Jianbo ;
Aghaabdollahian, Safieh ;
Nabavi, Seyed Mohammad .
CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2023, 63 (14) :2093-2118
[9]   Role of PFKFB3-Driven Glycolysis in Vessel Sprouting [J].
De Bock, Katrien ;
Georgiadou, Maria ;
Schoors, Sandra ;
Kuchnio, Anna ;
Wong, Brian W. ;
Cantelmo, Anna Rita ;
Quaegebeur, Annelies ;
Ghesquiere, Bart ;
Cauwenberghs, Sandra ;
Eelen, Guy ;
Phng, Li-Kun ;
Betz, Inge ;
Tembuyser, Bieke ;
Brepoels, Katleen ;
Welti, Jonathan ;
Geudens, Ilse ;
Segura, Inmaculada ;
Cruys, Bert ;
Bifari, Franscesco ;
Decimo, Ilaria ;
Blanco, Raquel ;
Wyns, Sabine ;
Vangindertael, Jeroen ;
Rocha, Susana ;
Collins, Russel T. ;
Munck, Sebastian ;
Daelemans, Dirk ;
Imamura, Hiromi ;
Devlieger, Roland ;
Rider, Mark ;
Van Veldhoven, Paul P. ;
Schuit, Frans ;
Bartrons, Ramon ;
Hofkens, Johan ;
Fraisl, Peter ;
Telang, Sucheta ;
DeBerardinis, Ralph J. ;
Schoonjans, Luc ;
Vinckier, Stefan ;
Chesney, Jason ;
Gerhardt, Holger ;
Dewerchin, Mieke ;
Carmeliet, Peter .
CELL, 2013, 154 (03) :651-663
[10]   Trained Immunity and Reactivity of Macrophages and Endothelial Cells [J].
Drummer, Charles ;
Saaoud, Fatma ;
Shao, Ying ;
Sun, Yu ;
Xu, Keman ;
Lu, Yifan ;
Ni, Dong ;
Atar, Diana ;
Jiang, Xiaohua ;
Wang, Hong ;
Yang, Xiaofeng .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2021, 41 (03) :1032-1046