Efficient reinforcement learning: Model-based acrobot control

被引:0
|
作者
Boone, G
机构
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Several methods have been proposed in the reinforcement learning literature for learning optimal policies for sequential decision tasks. Q-learning is a model-free algorithm that has recently been applied to the Acrobot, a two-link arm with a single actuator at the elbow that learns to swing its free endpoint above a target height. However, applying Q-learning to a real Acrobot may be impractical due to the large number of required movements of the real robot as the controller learns. This paper explores the planning speed and data efficiency of explicitly learning models, as well as using heuristic knowledge to aid the search for solutions and reduce the amount of data required from the real robot.
引用
收藏
页码:229 / 234
页数:6
相关论文
共 50 条
  • [31] The ubiquity of model-based reinforcement learning
    Doll, Bradley B.
    Simon, Dylan A.
    Daw, Nathaniel D.
    CURRENT OPINION IN NEUROBIOLOGY, 2012, 22 (06) : 1075 - 1081
  • [32] Multiple model-based reinforcement learning
    Doya, K
    Samejima, K
    Katagiri, K
    Kawato, M
    NEURAL COMPUTATION, 2002, 14 (06) : 1347 - 1369
  • [33] A survey on model-based reinforcement learning
    Luo, Fan-Ming
    Xu, Tian
    Lai, Hang
    Chen, Xiong-Hui
    Zhang, Weinan
    Yu, Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (02)
  • [34] Model-Based Reinforcement Learning With Probabilistic Ensemble Terminal Critics for Data-Efficient Control Applications
    Park, Jonghyeok
    Jeon, Soo
    Han, Soohee
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (08) : 9470 - 9479
  • [35] Hybrid control for combining model-based and model-free reinforcement learning
    Pinosky, Allison
    Abraham, Ian
    Broad, Alexander
    Argall, Brenna
    Murphey, Todd D.
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2023, 42 (06): : 337 - 355
  • [36] Laboratory experiments of model-based reinforcement learning for adaptive optics control
    Nousiainen, Jalo
    Engler, Byron
    Kasper, Markus
    Rajani, Chang
    Helin, Tapio
    Heritier, Cedric T.
    Quanz, Sascha P.
    Glauser, Adrian M.
    JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2024, 10 (01)
  • [37] Model-based reinforcement learning control of reaction-diffusion problems
    Schenk, Christina
    Vasudevan, Aditya
    Haranczyk, Maciej
    Romero, Ignacio
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2024, 45 (06): : 2897 - 2914
  • [38] Model-Based Reinforcement Learning for Optimal Feedback Control of Switched Systems
    Greene, Max L.
    Abudia, Moad
    Kamalapurkar, Rushikesh
    Dixon, Warren E.
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 162 - 167
  • [39] Transmission Control in NB-IoT With Model-Based Reinforcement Learning
    Alcaraz, Juan J.
    Losilla, Fernando
    Gonzalez-Castano, Francisco-Javier
    IEEE ACCESS, 2023, 11 : 57991 - 58005
  • [40] Robust Model-Based Reinforcement Learning Control of a Batch Crystallization Process
    Benyahia, B.
    Anandan, P. D.
    Rielly, C.
    2021 9TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC'21), 2021, : 89 - 94