A WELL-BALANCED DG SCHEME WITH UNCONDITIONALLY POSITIVE IMPLICIT TIME INTEGRATION

被引:0
作者
Ortleb, Sigrun [1 ]
Meister, Andreas [1 ]
机构
[1] Univ Kassel, Fachbereich Math & Nat Wissensch, Heinrich Plett Str 40, D-34132 Kassel, Germany
来源
HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS | 2014年 / 8卷
关键词
DG method; shallow water equations; implicit time integration; well-balancedness; unconditional positivity; Patankar schemes; SHALLOW-WATER EQUATIONS; DISCONTINUOUS GALERKIN METHODS; CONSERVATION-LAWS; SOURCE TERMS; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new well-balanced and positivity preserving DG scheme with modal filtering on unstructured triangular grids using implicit time integration. The novel approach is based on the so-called Patankar trick and guarantees non-negativity of the water height for any time step size while still preserving conservativity. Due to this modification, the implicit scheme can now take full advantage of larger time steps and is therefore able to beat explicit time stepping in terms of CPU time.
引用
收藏
页码:823 / 830
页数:8
相关论文
共 20 条
[1]   A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows [J].
Audusse, E ;
Bouchut, F ;
Bristeau, MO ;
Klein, R ;
Perthame, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2050-2065
[2]   Central-Upwind Scheme on Triangular Grids for the Saint-Venant System of Shallow Water Equations [J].
Bryson, Steve ;
Epshteyn, Yekaterina ;
Kurganov, Alexander ;
Petrova, Guergana .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
[3]   A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations [J].
Burchard, H ;
Deleersnijder, E ;
Meister, A .
APPLIED NUMERICAL MATHEMATICS, 2003, 47 (01) :1-30
[4]  
CASH JR, 1979, J I MATH APPL, V24, P293
[5]   Runge-Kutta discontinuous Galerkin methods for convection-dominated problems [J].
Cockburn, Bernardo ;
Shu, Chi-Wang .
Journal of Scientific Computing, 2001, 16 (03) :173-261
[6]  
Dubiner M., 1991, Journal of Scientific Computing, V6, P345, DOI 10.1007/BF01060030
[7]   On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas [J].
Gallardo, Jose M. ;
Pares, Carlos ;
Castro, Manuel .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (01) :574-601
[8]   ON UPSTREAM DIFFERENCING AND GODUNOV-TYPE SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A ;
LAX, PD ;
VAN LEER, B .
SIAM REVIEW, 1983, 25 (01) :35-61
[9]   Representations of Runge-Kutta methods and strong stability preserving methods [J].
Higueras, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) :924-948
[10]  
Karniadakis G.E., 2005, Spectral/hp Element Methods for Computational Fluid Dynamics, V2nd