EVALUATION OF COMPLEXITY MEASURES FOR DEEP LEARNING GENERALIZATION IN MEDICAL IMAGE ANALYSIS

被引:0
|
作者
Vakanski, Aleksandar [1 ]
Xian, Min [2 ]
机构
[1] Univ Idaho, Dept Nucl Engn & Ind Management, Idaho Falls, ID 83402 USA
[2] Univ Idaho, Dept Comp Sci, Idaho Falls, ID USA
来源
2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2021年
基金
美国国家卫生研究院;
关键词
Deep Learning; Generalization; Complexity Measures; Medical Image Analysis;
D O I
10.1109/MLSP52302.2021.9596501
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The generalization error of deep learning models for medical image analysis often increases on images collected with different devices for data acquisition, device settings, or patient population. A better understanding of the generalization capacity on new images is crucial for clinicians' trustworthiness. Although significant efforts have been recently directed toward establishing generalization bounds and complexity measures, there is still a significant discrepancy between the predicted and actual generalization performance. As well, related large empirical studies have been primarily based on validation with general-purpose image datasets. This paper presents an empirical study that investigates the correlation between 25 complexity measures and the generalization abilities of deep learning classifiers for breast ultrasound images. The results indicate that PAC-Bayes flatness and path norm measures produce the most consistent explanation for the combination of models and data. We also report that multi-task classification and segmentation approach for breast images is conducive toward improved generalization.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Deep learning for medical image analysis: a brief introduction
    Wiestler, Benedikt
    Menze, Bjoern
    NEURO-ONCOLOGY ADVANCES, 2020, 2 (SUPP 4) : 35 - 41
  • [42] Deep Learning in Medical Ultrasound Image Analysis: A Review
    Wang, Yu
    Ge, Xinke
    Ma, He
    Qi, Shouliang
    Zhang, Guanjing
    Yao, Yudong
    IEEE ACCESS, 2021, 9 : 54310 - 54324
  • [43] On the Effective Transfer Learning Strategy for Medical Image Analysis in Deep Learning
    Wen, Yang
    Chen, Leiting
    Zhou, Chuan
    Deng, Yu
    Zeng, Huiru
    Xi, Shuo
    Guo, Rui
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 827 - 834
  • [44] Multi-task deep learning for medical image computing and analysis: A review
    Zhao, Yan
    Wang, Xiuying
    Che, Tongtong
    Bao, Guoqing
    Li, Shuyu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 153
  • [45] Review of Machine Learning and Deep Learning Techniques for Medical Image Analysis
    Saratkar, Saniya
    Raut, Rohini
    Thute, Trupti
    Chaudhari, Aarti
    Thakre, Gaitri
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 1437 - 1443
  • [46] Deep Learning and Medical Image Analysis for COVID-19 Diagnosis and Prediction
    Liu, Tianming
    Siegel, Eliot
    Shen, Dinggang
    ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2022, 24 : 179 - 201
  • [47] Understanding adversarial attacks on deep learning based medical image analysis systems
    Ma, Xingjun
    Niu, Yuhao
    Gu, Lin
    Yisen, Wang
    Zhao, Yitian
    Bailey, James
    Lu, Feng
    PATTERN RECOGNITION, 2021, 110
  • [48] O-MedAL: Online active deep learning for medical image analysis
    Smailagic, Asim
    Costa, Pedro
    Gaudio, Alex
    Khandelwal, Kartik
    Mirshekari, Mostafa
    Fagert, Jonathon
    Walawalkar, Devesh
    Xu, Susu
    Galdran, Adrian
    Zhang, Pei
    Campilho, Aurelio
    Noh, Hae Young
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (04)
  • [49] An Improvement for Medical Image Analysis Using Data Enhancement Techniques in Deep Learning
    Namozov, Abdulaziz
    Cho, Young Im
    2018 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY ROBOTICS (ICT-ROBOT), 2018,
  • [50] Collaborative Deep Learning for Medical Image Analysis with Differential Privacy
    Yuan, Danni
    Zhu, Xiaoyan
    Weit, Mingkui
    Ma, Jianfeng
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,