Periodic solutions for Lienard type p-Laplacian equation with a deviating argument

被引:23
作者
Liu, Bingwen [1 ]
机构
[1] Jiaxing Univ, Coll Math & Informat Sci, Jiaxing 314001, Zhejiang, Peoples R China
基金
中国博士后科学基金;
关键词
p-Laplacian; Lienard equation; deviating argument; periodic solution; coincidence degree;
D O I
10.1016/j.cam.2007.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the coincidence degree theory to establish new results on the existence of T-periodic solutions for the Lienard type p-Laplacian equation with a deviating argument of the form: (phi p(x'(t)))' + f(x(t))x'(t) + g(t, x(t - tau(t))) = e(t). (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 8 条
[1]   Periodic solutions for p-Laplacian differential equation with multiple deviating arguments [J].
Cheung, WS ;
Ren, JL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (04) :727-742
[2]   On the existence of periodic solutions for p-Laplacian generalized Lienard equation [J].
Cheung, WS ;
Ren, JL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (01) :65-75
[3]   Periodic solutions for p-Laplacian Lienard equation with a deviating argument [J].
Cheung, WS ;
Ren, JL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (1-2) :107-120
[4]  
LU S, 2007, NONLINEAR ANAL, V6, P9
[5]   On the existence of periodic solutions to p-Laplacian Rayleigh differential equation with a delay [J].
Lu, Shiping ;
Gui, Zhanjie .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :685-702
[6]  
MANDSEVICH R, 1998, J DIFFER EQUATIONS, V45, P367
[7]  
PENG S, 2007, J MATH ANAL APPL, V325
[8]   Periodic solutions for Rayleigh type p-Laplacian equation with deviating arguments [J].
Zong, Minggang ;
Liang, Hongzhen .
APPLIED MATHEMATICS LETTERS, 2007, 20 (01) :43-47