Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot

被引:53
作者
Amador-Angulo, Leticia [1 ]
Mendoza, Olivia [2 ]
Castro, Juan R. [2 ]
Rodriguez-Diaz, Antonio [2 ]
Melin, Patricia [1 ]
Castillo, Oscar [1 ]
机构
[1] Tijuana Inst Technol, Div Grad Studies & Res, Tijuana 22414, Mexico
[2] Univ Autonoma Baja California, Tijuana 22390, Mexico
关键词
bee colony optimization; fuzzy controller; fuzzy sets; uncertainty; dynamic adaptation; membership functions; perturbation; autonomous mobile robot; ALPHA-PLANE REPRESENTATION; INTERVAL TYPE-2; SYSTEMS; INFORMATION; ALGORITHM; DESIGN; GENERATION; REDUCTION;
D O I
10.3390/s16091458
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm.
引用
收藏
页数:27
相关论文
共 58 条
[31]   Comments on "α-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications" [J].
Mendel, Jerry M. .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (01) :229-230
[32]   α-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications [J].
Mendel, Jerry M. ;
Liu, Feilong ;
Zhai, Daoyuan .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2009, 17 (05) :1189-1207
[33]   Type-2 fuzzy sets made simple [J].
Mendel, JM ;
John, RI .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2002, 10 (02) :117-127
[34]  
Mendonca Filho J.G., 2010, paleontologia: conceitos e metodos, V3, P1
[35]   Footprint of uncertainty for type-2 fuzzy sets [J].
Mo, Hong ;
Wang, F. -Y. ;
Zhou, Min ;
Li, Runmei ;
Xiao, Zhiquan .
INFORMATION SCIENCES, 2014, 272 :96-110
[36]  
Naim S., P 2013 IEEE INT C FU, P1
[37]  
Ochoa P, 2014, STUD COMPUT INTELL, V547, P275, DOI 10.1007/978-3-319-05170-3_19
[38]   Non-linear simulation of controller for longitudinal control augmentation system of F-16 using numerical approach [J].
Rachman, E ;
Jaam, JM ;
Hasnah, AM .
INFORMATION SCIENCES, 2004, 164 (1-4) :47-60
[39]   Combining fuzzy, PID and regulation control for an autonomous mini-helicopter [J].
Sanchez, Edgar N. ;
Becerra, Hector M. ;
Velez, Carlos M. .
INFORMATION SCIENCES, 2007, 177 (10) :1999-2022
[40]   Generalized Type-2 Fuzzy Systems for controlling a mobile robot and a performance comparison with Interval Type-2 and Type-1 Fuzzy Systems [J].
Sanchez, Mauricio A. ;
Castillo, Oscar ;
Castro, Juan R. .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (14) :5904-5914