Aberration measurement and correction on a large field of view in fluorescence microscopy

被引:14
作者
Furieri, T. [1 ,2 ]
Ancora, D. [3 ]
Calisesi, G. [3 ]
Morara, S. [4 ]
Bassi, A. [3 ]
Bonora, S. [1 ]
机构
[1] Natl Council Res Italy, Inst Photon & Nanotechnol, Via Trasea 7, I-35131 Padua, Italy
[2] Univ Padua, Dept Informat Engn, Via Gradenigo 6, I-35131 Padua, Italy
[3] Politecn Milan, Dept Phys, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[4] Natl Council Res Italy, Inst Neurosci, Via Vanvitelli 32, I-20129 Milan, Italy
基金
欧盟地平线“2020”;
关键词
SENSORLESS ADAPTIVE OPTICS; LIGHT-SHEET MICROSCOPY; PUPIL SEGMENTATION; ORGANS; OCT;
D O I
10.1364/BOE.441810
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The aberrations induced by the sample and/or by the sample holder limit the resolution of optical microscopes. Wavefront correction can be achieved using a deformable mirror with wavefront sensorless optimization algorithms but, despite the complexity of these systems, the level of correction is often limited to a small area in the field of view of the microscope. In this work, we present a plug and play module for aberration measurement and correction. The wavefront correction is performed through direct wavefront reconstruction using the spinning pupil aberration measurement and controlling a deformable lens in closed loop. The lens corrects the aberrations in the center of the field of view, leaving residual aberrations at the margins, that are removed by anisoplanatic deconvolution. We present experimental results obtained in fluorescence microscopy, with a wide field and a light sheet fluorescence microscope. These results indicate that detection and correction over the full field of view can be achieved with a compact transmissive module placed in the detection path of the fluorescence microscope. (c) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:262 / 273
页数:12
相关论文
共 26 条
[1]  
Ancora D., OPT LETT
[2]   Optofluidic adaptive optics [J].
Banerjee, Kaustubh ;
Rajaeipour, Pouya ;
Ataman, Caglar ;
Zappe, Hans .
APPLIED OPTICS, 2018, 57 (22) :6338-6344
[3]   Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens [J].
Bonora, Stefano ;
Jian, Yifan ;
Zhang, Pengfei ;
Zam, Azhar ;
Pugh, Edward N., Jr. ;
Zawadzki, Robert J. ;
Sarunic, Marinko V. .
OPTICS EXPRESS, 2015, 23 (17) :21931-21941
[4]   Adaptive optical microscopy: the ongoing quest for a perfect image [J].
Booth, Martin J. .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e165-e165
[5]   Virtual unfolding of light sheet fluorescence microscopy dataset for quantitative analysis of the mouse intestine [J].
Candeo, Alessia ;
Sana, Ilenia ;
Ferrari, Eleonora ;
Maiuri, Luigi ;
D'Andrea, Cosimo ;
Valentini, Gianluca ;
Bassi, Andrea .
JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (05)
[6]   Structural and molecular interrogation of intact biological systems [J].
Chung, Kwanghun ;
Wallace, Jenelle ;
Kim, Sung-Yon ;
Kalyanasundaram, Sandhiya ;
Andalman, Aaron S. ;
Davidson, Thomas J. ;
Mirzabekov, Julie J. ;
Zalocusky, Kelly A. ;
Mattis, Joanna ;
Denisin, Aleksandra K. ;
Pak, Sally ;
Bernstein, Hannah ;
Ramakrishnan, Charu ;
Grosenick, Logan ;
Gradinaru, Viviana ;
Deisseroth, Karl .
NATURE, 2013, 497 (7449) :332-+
[7]   High-resolution imaging of entire organs by 3-dimensional imaging of solvent cleared organs (3DISCO) [J].
Ertuerk, Ali ;
Bradke, Frank .
EXPERIMENTAL NEUROLOGY, 2013, 242 :57-64
[8]   Three-dimensional imaging of solvent-cleared organs using 3DISCO [J].
Ertuerk, Ali ;
Becker, Klaus ;
Jaehrling, Nina ;
Mauch, Christoph P. ;
Hojer, Caroline D. ;
Egen, Jackson G. ;
Hellal, Farida ;
Bradke, Frank ;
Sheng, Morgan ;
Dodt, Hans-Ulrich .
NATURE PROTOCOLS, 2012, 7 (11) :1983-1995
[9]   Adaptive optical fluorescence microscopy [J].
Ji, Na .
NATURE METHODS, 2017, 14 (04) :374-380
[10]   Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues [J].
Ji, Na ;
Milkie, Daniel E. ;
Betzig, Eric .
NATURE METHODS, 2010, 7 (02) :141-U84