STABILITY ANALYSIS AND ERROR ESTIMATES OF LOCAL DISCONTINUOUS GALERKIN METHOD FOR CONVECTION-DIFFUSION EQUATIONS ON OVERLAPPING MESH WITH NON-PERIODIC BOUNDARY CONDITIONS

被引:0
作者
Chuenjarern, Nattaporn [1 ]
Wuttanachamsri, Kanognudge [1 ]
Yang, Yang [2 ]
机构
[1] King Mongkuts Inst Technol Ladkrabang, Dept Math, Bangkok 10520, Thailand
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
关键词
Local discontinuous Galerkin method; stability; error analysis; overlapping meshes; FINITE-ELEMENT-METHOD; COMPRESSIBLE MISCIBLE DISPLACEMENTS; CONSERVATION-LAWS; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new local discontinuous Galerkin (LDG) method for convection-diffusion equations on overlapping meshes with periodic boundary conditions was introduced in [14]. With the new method, the primary variable u and the auxiliary variable p = ux are solved on different meshes. In this paper, we will extend the idea to convection-diffusion equations with non-periodic boundary conditions, i.e. Neumann and Dirichlet boundary conditions. The main difference is to adjust the boundary cells. Moreover, we study the stability and suboptimal error estimates. Finally, numerical experiments are given to verify the theoretical findings.
引用
收藏
页码:788 / 810
页数:23
相关论文
共 29 条
[1]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[2]   Fourier Analysis of Local Discontinuous Galerkin Methods for Linear Parabolic Equations on Overlapping Meshes [J].
Chuenjarern, Nattaporn ;
Yang, Yang .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) :671-688
[3]   High-order bound-preserving discontinuous Galerkin methods for compressible miscible displacements in porous media on triangular meshes [J].
Chuenjarern, Nattaporn ;
Xu, Ziyao ;
Yang, Yang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 378 :110-128
[4]   A staggered discontinuous Galerkin method for the convection-diffusion equation [J].
Chung, E. ;
Lee, C. S. .
JOURNAL OF NUMERICAL MATHEMATICS, 2012, 20 (01) :1-31
[5]  
Ciarlet PG, 2002, The Finite Element Method for Elliptic Problems
[6]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[7]   The Runge-Kutta discontinuous Galerkin method for conservation laws V - Multidimensional systems [J].
Cockburn, B ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) :199-224
[8]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[9]   THE RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .4. THE MULTIDIMENSIONAL CASE [J].
COCKBURN, B ;
HOU, SC ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :545-581
[10]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .3. ONE-DIMENSIONAL SYSTEMS [J].
COCKBURN, B ;
LIN, SY ;
SHU, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 84 (01) :90-113