ACCELERATING MAGNETIC RESONANCE IMAGING VIA DEEP LEARNING

被引:621
|
作者
Wang, Shanshan [1 ]
Su, Zhenghang [2 ]
Ying, Leslie [3 ,4 ]
Peng, Xi [1 ]
Zhu, Shun [1 ]
Liang, Feng [5 ]
Feng, Dagan [6 ]
Liang, Dong [1 ]
机构
[1] Chinese Acad Sci, SIAT, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen, Peoples R China
[2] Guangdong Univ Technol, Sch Informat Technol, Guangzhou, Guangdong, Peoples R China
[3] SUNY Buffalo, Dept Biomed Engn, Buffalo, NY 14260 USA
[4] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[5] Nankai Univ, Dept Ind Engn, Tianjin, Peoples R China
[6] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia
来源
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2016年
基金
美国国家科学基金会;
关键词
Deep learning; magnetic resonance imaging; prior knowledge; convolutional neural network; FAST ALGORITHMS; RECONSTRUCTION;
D O I
10.1109/ISBI.2016.7493320
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper proposes a deep learning approach for accelerating magnetic resonance imaging (MRI) using a large number of existing high quality MR images as the training datasets. An off-line convolutional neural network is designed and trained to identify the mapping relationship between the MR images obtained from zero-filled and fully-sampled k-space data. The network is not only capable of restoring fine structures and details but is also compatible with online constrained reconstruction methods. Experimental results on real MR data have shown encouraging performance of the proposed method for efficient and accurate imaging.
引用
收藏
页码:514 / 517
页数:4
相关论文
共 50 条
  • [1] Accelerated Phase Contrast Magnetic Resonance Imaging via Deep Learning
    Nath, Ruponti
    Callahan, Sean
    Singam, Narayana
    Stoddard, Marcus
    Amini, Amir A.
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 834 - 838
  • [2] Intra voxel analysis in magnetic resonance imaging via deep learning
    Autorino, Maria Maddalena
    Franceschini, Stefano
    Ambrosanio, Michele
    Pascazio, Vito
    Baselice, Fabio
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (01)
  • [3] Compressed sensing regularized calibrationless parallel magnetic resonance imaging via deep learning
    Islam, Sheikh Rafiul
    Maity, Santi P.
    Ray, Ajoy Kumar
    Biomedical Signal Processing and Control, 2021, 66
  • [4] Compressed sensing regularized calibrationless parallel magnetic resonance imaging via deep learning
    Islam, Sheikh Rafiul
    Maity, Santi P.
    Ray, Ajoy Kumar
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 66
  • [5] A New Framework for Accelerating Magnetic Resonance Imaging using Deep Learning along with HPC Parallel Computing Technologies
    Aljahdali, Hani Moaiteq
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (11) : 670 - 678
  • [6] A New Framework for Accelerating Magnetic Resonance Imaging using Deep Learning along with HPC Parallel Computing Technologies
    Aljahdali, Hani Moaiteq
    International Journal of Advanced Computer Science and Applications, 2022, 13 (11): : 670 - 678
  • [7] Improving Quantitative Magnetic Resonance Imaging Using Deep Learning
    Liu, Fang
    SEMINARS IN MUSCULOSKELETAL RADIOLOGY, 2020, 24 (04) : 451 - 459
  • [8] Artificial Intelligence and Deep Learning in Musculoskeletal Magnetic Resonance Imaging
    Baek, Seung Dae
    Lee, Joohee
    Kim, Sungjun
    Song, Ho-Taek
    Lee, Young Han
    INVESTIGATIVE MAGNETIC RESONANCE IMAGING, 2023, 27 (02) : 67 - 74
  • [9] Fetal magnetic resonance imaging artifacts: role of deep learning to improve imaging
    Werner, H.
    Santos, I. Felix
    Giraldi, G. A.
    Lopes, J.
    Ribeiro, G.
    Lopes, F. P.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2023, 62 (02) : 302 - 303
  • [10] Faster acquisition of magnetic resonance imaging sequences of the knee via deep learning reconstruction: a volunteer study
    Akai, H.
    Yasaka, K.
    Sugawara, H.
    Furuta, T.
    Tajima, T.
    Kato, S.
    Yamaguchi, H.
    Ohtomo, K.
    Abe, O.
    Kiryu, S.
    CLINICAL RADIOLOGY, 2024, 79 (06) : 453 - 459