Accuracy vs. computational time: Translating aortic simulations to the clinic

被引:82
作者
Brown, Alistair G. [1 ]
Shi, Yubing [1 ]
Marzo, Alberto [2 ]
Staicu, Cristina [1 ]
Valverde, Isra [3 ]
Beerbaum, Philipp [3 ]
Lawford, Patricia V. [1 ]
Hose, D. Rodney [1 ]
机构
[1] Univ Sheffield, Med Phys Grp, Dept Cardiovasc Sci, Sheffield, S Yorkshire, England
[2] Sheffield Teaching Hosp NHS Fdn Trust, Sheffield, S Yorkshire, England
[3] Kings Coll London, London, England
关键词
Haemodynamics; Aorta; Computational fluid dynamics (CFD); Fluid structure interaction (FSI); CARDIOVASCULAR-SYSTEM; BLOOD-FLOW; ANEURYSMS; VESSELS; MODELS;
D O I
10.1016/j.jbiomech.2011.11.041
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
State of the art simulations of aortic haemodynamics feature full fluid-structure interaction (FSI) and coupled OD boundary conditions. Such analyses require not only significant computational resource but also weeks to months of run time, which compromises the effectiveness of their translation to a clinical workflow. This article employs three computational fluid methodologies, of varying levels of complexity with coupled OD boundary conditions, to simulate the haemodynamics within a patient-specific aorta. The most comprehensive model is a full FSI simulation. The simplest is a rigid walled incompressible fluid simulation while an alternative middle-ground approach employs a compressible fluid, tuned to elicit a response analogous to the compliance of the aortic wall. The results demonstrate that, in the context of certain clinical questions, the simpler analysis methods may capture the important characteristics of the flow field. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:516 / 523
页数:8
相关论文
共 20 条
[1]   Efficient computational fluid dynamics mesh generation by image registration [J].
Barber, D. C. ;
Oubel, E. ;
Frangi, A. F. ;
Hose, D. R. .
MEDICAL IMAGE ANALYSIS, 2007, 11 (06) :648-662
[2]   Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device [J].
Bazilevs, Y. ;
Gohean, J. R. ;
Hughes, T. J. R. ;
Moser, R. D. ;
Zhang, Y. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (45-46) :3534-3550
[3]   Simulation of blood flow in human aorta with emphasis on outlet boundary conditions [J].
Benim, A. C. ;
Nahavandi, A. ;
Assmann, A. ;
Schubert, D. ;
Feindt, P. ;
Suh, S. H. .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (07) :3175-3188
[4]  
Brown A.G., 2011, COMPUTER METHODS BIO
[5]   Added-mass effect in the design of partitioned algorithms for fluid-structure problems [J].
Causin, P ;
Gerbeau, JF ;
Nobile, F .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (42-44) :4506-4527
[6]   On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels [J].
Formaggia, L ;
Gerbeau, JF ;
Nobile, F ;
Quarteroni, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 191 (6-7) :561-582
[7]   A mathematical description of blood spiral flow in vessels: application to a numerical study of flow in arterial bending [J].
Grigioni, M ;
Daniele, C ;
Morbiducci, U ;
Del Gaudio, C ;
D'Avenio, G ;
Balducci, A ;
Barbaro, V .
JOURNAL OF BIOMECHANICS, 2005, 38 (07) :1375-1386
[8]   Fundamental mechanics of aortic heart valve closure [J].
Hose, DR ;
Narracott, AJ ;
Penrose, JMT ;
Baguley, D ;
Jones, IP ;
Lawford, PV .
JOURNAL OF BIOMECHANICS, 2006, 39 (05) :958-967
[9]   On Coupling a Lumped Parameter Heart Model and a Three-Dimensional Finite Element Aorta Model [J].
Kim, H. J. ;
Vignon-Clementel, I. E. ;
Figueroa, C. A. ;
LaDisa, J. F. ;
Jansen, K. E. ;
Feinstein, J. A. ;
Taylor, C. A. .
ANNALS OF BIOMEDICAL ENGINEERING, 2009, 37 (11) :2153-2169
[10]   Multiscale modeling of the cardiovascular system:: application to the study of pulmonary and coronary perfusions in the univentricular circulation [J].
Laganà, K ;
Balossino, R ;
Migliavacca, F ;
Pennati, G ;
Bove, EL ;
de Leval, MR ;
Dubini, G .
JOURNAL OF BIOMECHANICS, 2005, 38 (05) :1129-1141