Functional principal component model for high-dimensional brain imaging

被引:48
作者
Zipunnikov, Vadim [1 ]
Caffo, Brian [1 ]
Yousem, David M. [2 ]
Davatzikos, Christos [3 ]
Schwartz, Brian S. [4 ]
Crainiceanu, Ciprian [1 ]
机构
[1] Johns Hopkins Univ, Dept Biostat, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ Hosp, Dept Radiol, Baltimore, MD 21287 USA
[3] Univ Penn, Philadelphia, PA 19104 USA
[4] Johns Hopkins Bloomberg Sch Publ Hlth, Baltimore, MD USA
关键词
Voxel-based morphometry (VBM); MRI; FPCA; SVD; Brain imaging data; LEAD LEVELS; MORPHOMETRY;
D O I
10.1016/j.neuroimage.2011.05.085
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We explore a connection between the singular value decomposition (SVD) and functional principal component analysis (FPCA) models in high-dimensional brain imaging applications. We formally link right singular vectors to principal scores of FPCA. This, combined with the fact that left singular vectors estimate principal components, allows us to deploy the numerical efficiency of SVD to fully estimate the components of FPCA, even for extremely high-dimensional functional objects, such as brain images. As an example, a FPCA model is fit to high-resolution morphometric (RAVENS) images. The main directions of morphometric variation in brain volumes are identified and discussed. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:772 / 784
页数:13
相关论文
共 34 条
[1]  
[Anonymous], 2002, Principal Component Analysis
[2]   Voxel-based morphometry - The methods [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2000, 11 (06) :805-821
[3]   Tensorial extensions of independent component analysis for multisubject FMRI analysis [J].
Beckmann, CF ;
Smith, SM .
NEUROIMAGE, 2005, 25 (01) :294-311
[4]   Two-stage decompositions for the analysis of functional connectivity for fMRI with application to Alzheimer's disease risk [J].
Caffo, Brian S. ;
Crainiceanu, Ciprian M. ;
Verduzco, Guillermo ;
Joel, Suresh ;
Mostofsky, Stewart H. ;
Bassett, Susan Spear ;
Pekar, James J. .
NEUROIMAGE, 2010, 51 (03) :1140-1149
[5]   Generalized Multilevel Functional Regression [J].
Crainiceanu, Ciprian M. ;
Staicu, Ana-Maria ;
Di, Chong-Zhi .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (488) :1550-1561
[6]  
CRAINICEANU CM, 2010, 220 JOHNS HOPK U DEP
[7]   Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging [J].
Davatzikos, Christos ;
Fan, Yong ;
Wu, Xiaoying ;
Shen, Dinggang ;
Resnick, Susan M. .
NEUROBIOLOGY OF AGING, 2008, 29 (04) :514-523
[8]  
Demidenko, 2004, MIXED MODELS THEORY
[9]  
Di C., 2010, Multilevel sparse functional principal component analysis
[10]   MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS [J].
Di, Chong-Zhi ;
Crainiceanu, Ciprian M. ;
Caffo, Brian S. ;
Punjabi, Naresh M. .
ANNALS OF APPLIED STATISTICS, 2009, 3 (01) :458-488