A cascade of boosted generative and discriminative classifiers for vehicle detection

被引:69
作者
Negri, Pablo [1 ]
Clady, Xavier [1 ]
Hanif, Shehzad Muhammad [1 ]
Prevost, Lionel [1 ]
机构
[1] Univ Paris 06, CNRS FRE 5207, Inst Syst Intelligents & Robot, F-94200 Ivry, France
关键词
D O I
10.1155/2008/782432
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
of features are compared: the rectangular filters (Haar-like features), the histograms of oriented gradient (HoG), and their combination ( a concatenation of the two preceding features). A comparative study of the results of the generative ( HoG features), discriminative ( Haar-like features) detectors, and of their fusion is presented. These results show that the fusion combines the advantages of the other two detectors: generative classifiers eliminate "easily" negative examples in the early layers of the cascade, while in the later layers, the discriminative classifiers generate a fine decision boundary removing the negative examples near the vehicle model. The best algorithm achieves good performances on a test set containing some 500 vehicle images: the detection rate is about 94% and the false-alarm rate per image is 0.0003. Copyright (c) 2008 Pablo Negri et al.
引用
收藏
页数:12
相关论文
共 43 条
  • [31] Schneiderman H, 2000, PROC CVPR IEEE, P746, DOI 10.1109/CVPR.2000.855895
  • [32] SRINIVASA N, 2002, P IEEE INT VEH S, V2, P626
  • [33] On-road vehicle detection: A review
    Sun, ZH
    Bebis, G
    Miller, R
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (05) : 694 - 711
  • [34] On-road vehicle detection using evolutionary Gabor filter optimization
    Sun, ZH
    Bebis, G
    Miller, R
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2005, 6 (02) : 125 - 137
  • [35] Object detection using feature subset selection
    Sun, ZH
    Bebis, G
    Miller, R
    [J]. PATTERN RECOGNITION, 2004, 37 (11) : 2165 - 2176
  • [36] Efficient image gradient based vehicle localization
    Tan, TN
    Baker, KD
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (08) : 1343 - 1356
  • [37] Triggs B, 2005, P CVPR, P886
  • [38] VANLEEUWEN MB, 2001, VEHICLE DETECTION MO
  • [39] Viola P, 2001, EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS, P747
  • [40] Wu JW, 2001, IEEE IJCNN, P600, DOI 10.1109/IJCNN.2001.939090