Analysis of backward Euler projection FEM for the Landau-Lifshitz equation

被引:7
作者
An, Rong [1 ]
Sun, Weiwei [2 ,3 ]
机构
[1] Wenzhou Univ, Coll Math & Phys, Wenzhou, Peoples R China
[2] Beijing Normal Univ, Adv Inst Nat Sci, Zhuhai, Peoples R China
[3] United Int Coll BNU HKBU, Div Sci & Technol, Zhuhai 519087, Peoples R China
基金
中国国家自然科学基金;
关键词
Landau-Lifshitz equation; projection method; finite element method; optimal error estimates; FINITE-ELEMENT SCHEME; GILBERT; CONVERGENCE; MICROMAGNETICS; FLOW; INTEGRATION; NUMERICS;
D O I
10.1093/imanum/drab038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper focuses on the analysis of the Euler projection Galerkin finite element method (FEM) for the dynamics of magnetization in ferromagnetic materials, described by the Landau-Lifshitz equation with the point-wise constraint vertical bar m vertical bar = 1. The method is based on a simple sphere projection that projects the numerical solution onto a unit sphere at each time step, and the method has been used in many areas in the past several decades. However, error analysis for the commonly used method has not been done since the classical energy approach cannot be applied directly. In this paper we present an optimal L-2 error analysis of the backward Euler sphere projection method by using quadratic or higher order finite elements under a time step condition tau = O(epsilon(0)h) with some small epsilon(0) > 0. The analysis is based on more precise estimates of the extra error caused by the sphere projection in both L-2 and H-1 norms, and the classical estimate of dual norm. Numerical experiment is provided to confirm our theoretical analysis.
引用
收藏
页码:2336 / 2360
页数:25
相关论文
共 43 条
  • [1] Spin-polarized transport in ferromagnetic multilayers: An unconditionally convergent FEM integrator
    Abert, Claas
    Hrkac, Gino
    Page, Marcus
    Praetorius, Dirk
    Ruggeri, Michele
    Suess, Dieter
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (06) : 639 - 654
  • [2] Adams R.A., 1975, SOBOLEV SPACES
  • [3] HIGHER-ORDER LINEARLY IMPLICIT FULL DISCRETIZATION OF THE LANDAU-LIFSHITZ-GILBERT EQUATION
    Akrivis, Georgios
    Feischl, Michael
    Kovacs, Balazs
    Lubich, Christian
    [J]. MATHEMATICS OF COMPUTATION, 2021, 90 (329) : 995 - 1038
  • [4] Convergence of a finite element discretization for the Landau-Lifshitz equations in micromagnetism
    Alouges, F
    Jaisson, P
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (02) : 299 - 316
  • [5] A convergent and precise finite element scheme for Landau-Lifschitz-Gilbert equation
    Alouges, Francois
    Kritsikis, Evaggelos
    Steiner, Jutta
    Toussaint, Jean-Christophe
    [J]. NUMERISCHE MATHEMATIK, 2014, 128 (03) : 407 - 430
  • [6] A convergent finite element approximation for Landau-Lifschitz-Gilbert equation
    Alouges, Francois
    Kritsikis, Evaggelos
    Toussaint, Jean-Christophe
    [J]. PHYSICA B-CONDENSED MATTER, 2012, 407 (09) : 1345 - 1349
  • [7] A NEW FINITE ELEMENT SCHEME FOR LANDAU-LIFCHITZ EQUATIONS
    Alouges, Francois
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (02): : 187 - 196
  • [8] An R., 2021, SIAM J NUMER ANAL
  • [10] Banas L., 2005, LECT NOTES COMPUTER, V3401