Gross-Pitaevskii dynamics of Bose-Einstein condensates and superfluid turbulence

被引:44
|
作者
Abid, M
Huepe, C
Metens, S
Nore, C
Pham, CT
Tuckerman, LS
Brachet, ME
机构
[1] Ecole Normale Super, CNRS, Lab Phys Stat, F-75231 Paris, France
[2] Univ Paris 06, F-75231 Paris, France
[3] Univ Paris 07, F-75231 Paris, France
[4] CNRS, UMR 6594, Inst Rech Phenomenes Hors Equilibre, F-13384 Marseille, France
[5] Univ Aix Marseille 1, F-13384 Marseille, France
[6] Univ Aix Marseille 2, F-13384 Marseille, France
[7] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[8] Univ Paris 07, Lab Phys Theor Mat Condensee, F-75005 Paris, France
[9] Lab Informat Mecan & Sci Ingn, F-91403 Orsay, France
关键词
superfluid turbulence; Bose-Einstein condensates; Gross-Pitaevskii equation; bifurcation and dynamics; exact results; branch following method;
D O I
10.1016/j.fluiddyn.2003.09.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The Gross-Pitaevskii equation, also called the nonlinear Schrodinger equation (NLSE), describes the dynamics of low-temperature superflows and Bose-Einstein Condensates (BEC). We review some of our recent NLSE-based numerical studies of superfluid turbulence and BEC stability. The relations with experiments are discussed. (C) 2003 Published by The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.
引用
收藏
页码:509 / 544
页数:36
相关论文
共 50 条
  • [1] GROSS-PITAEVSKII DYNAMICS FOR BOSE-EINSTEIN CONDENSATES
    Brennecke, Christian
    Schlein, Benjamin
    ANALYSIS & PDE, 2019, 12 (06): : 1513 - 1596
  • [2] Gravity, Bose-Einstein condensates and Gross-Pitaevskii equation
    Das Gupta, Patrick
    CURRENT SCIENCE, 2015, 109 (11): : 1946 - 1950
  • [3] LOD-MS for Gross-Pitaevskii Equation in Bose-Einstein Condensates
    Kong, Linghua
    Hong, Jialin
    Zhang, Jingjing
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (01) : 219 - 241
  • [4] PROJECTED GROSS-PITAEVSKII EQUATION FOR RING-SHAPED BOSE-EINSTEIN CONDENSATES
    Prikhodko, O. O.
    Bidasyuk, Y. M.
    UKRAINIAN JOURNAL OF PHYSICS, 2021, 66 (03): : 198 - 205
  • [5] Perturbation theory for the Gross-Pitaevskii equation modeling stationary Bose-Einstein condensates
    Abulseoud, Ashraf A.
    Alsayad, Hala H.
    El-Sherbini, Tharwat M.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 463
  • [6] PAINLEVE ANALYSIS, LAX PAIR AND BACKLUND TRANSFORMATION FOR THE GROSS-PITAEVSKII EQUATION IN THE BOSE-EINSTEIN CONDENSATES
    Qi, Feng-Hua
    Tian, Bo
    Xu, Tao
    Zhang, Hai-Qiang
    Li, Li-Li
    Meng, Xiang-Hua
    Lue, Xing
    Liu, Wen-Jun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (08): : 1037 - 1047
  • [7] Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation
    Bao, WZ
    Jaksch, D
    Markowich, PA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) : 318 - 342
  • [8] A simple Dufort-Frankel-type scheme for the Gross-Pitaevskii equation of Bose-Einstein condensates on different geometries
    Lai, MC
    Huang, CY
    Lin, TS
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (04) : 624 - 638
  • [9] Static properties of coupled atomic-molecular Bose-Einstein condensates in modified Gross-Pitaevskii approach
    Gupta, Moumita
    Dastidar, Krishna Rai
    INDIAN JOURNAL OF PHYSICS, 2010, 84 (08) : 961 - 968
  • [10] Static properties of coupled atomic-molecular Bose-Einstein condensates in modified Gross-Pitaevskii approach
    Moumita Gupta
    Krishna Rai Dastidar
    Indian Journal of Physics, 2010, 84 : 961 - 968