A REGULARIZATION PARAMETER FOR NONSMOOTH TIKHONOV REGULARIZATION

被引:50
作者
Ito, Kazufumi [1 ,2 ]
Jin, Bangti [3 ,4 ]
Takeuchi, Tomoya [1 ,2 ]
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[4] Texas A&M Univ, Inst Appl Math & Computat Sci, College Stn, TX 77843 USA
关键词
regularization parameter; nonsmooth functional; value function; error estimate; TOTAL VARIATION MINIMIZATION; CONVEX VARIATIONAL REGULARIZATION; ILL-POSED PROBLEMS; CONVERGENCE-RATES; BANACH-SPACES; IMAGE-RESTORATION; CONSTRAINTS; CHOICE;
D O I
10.1137/100790756
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a novel rule for choosing regularization parameters in non-smooth Tikhonov functionals. It is solely based on the value function and applicable to a broad range of nonsmooth models, and it extends one known criterion. A posteriori error estimates of the approximations are derived. An efficient numerical algorithm for computing the minimizer is developed, and its convergence properties are discussed. Numerical results for several common nonsmooth models are presented, including deblurring natural images. The numerical results indicate the rule can yield results comparable with those achieved with the discrepancy principle and the optimal choice, and the algorithm merits a fast and steady convergence.
引用
收藏
页码:1415 / 1438
页数:24
相关论文
共 40 条
[1]  
[Anonymous], 2002, COMPUTATIONAL METHOD
[2]  
[Anonymous], 1998, NONLINEAR ILL POSED
[3]  
BAKUSHINSKII AB, 1984, USSR COMP MATH MATH+, V24, P181, DOI 10.1016/0041-5553(84)90253-2
[4]   Minimization of Tikhonov functionals in Banach spaces [J].
Bonesky, Thomas ;
Kazimierski, Kamil S. ;
Maass, Peter ;
Schoepfer, Frank ;
Schuster, Thomas .
ABSTRACT AND APPLIED ANALYSIS, 2008,
[5]   Morozov's discrepancy principle and Tikhonov-type functionals [J].
Bonesky, Thomas .
INVERSE PROBLEMS, 2009, 25 (01)
[6]   Convergence rates of convex variational regularization [J].
Burger, M ;
Osher, S .
INVERSE PROBLEMS, 2004, 20 (05) :1411-1421
[7]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[8]  
Chambolle A, 2004, J MATH IMAGING VIS, V20, P89
[9]   Aspects of total variation regularized L1 function approximation [J].
Chan, TF ;
Esedoglu, S .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (05) :1817-1837
[10]   A nonlinear primal-dual method for total variation-based image restoration [J].
Chan, TF ;
Golub, GH ;
Mulet, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (06) :1964-1977