Data integration for inferring context-specific gene regulatory networks

被引:6
|
作者
Baur, Brittany [1 ]
Shin, Junha [1 ]
Zhang, Shilu [1 ]
Roy, Sushmita [1 ,2 ]
机构
[1] Univ Wisconsin Madison, Wisconsin Inst Discovery, Madison, WI 53715 USA
[2] Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53715 USA
基金
新加坡国家研究基金会;
关键词
Gene regulatory networks; Gene regulation; Enhancer; Promoter; Single cell; Data integration; SEQ; CIRCUITS;
D O I
10.1016/j.coisb.2020.09.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcriptional regulatory networks control context-specific gene expression patterns and play important roles in normal and disease processes. Advances in genomics are rapidly increasing our ability to measure different components of the regulation machinery at the single-cell and bulk population level. An important challenge is to combine different types of regulatory genomic measurements to construct a more complete picture of gene regulatory networks across different disease, environmental, and developmental contexts. In this review, we focus on recent computational methods that integrate regulatory genomic datasets to infer context specificity and dynamics in regulatory networks.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 50 条
  • [41] The identifiability of gene regulatory networks: the role of observation data
    Xiao-Na Huang
    Wen-Jia Shi
    Zuo Zhou
    Xue-Jun Zhang
    Journal of Biological Physics, 2022, 48 : 93 - 110
  • [42] Identifying gene regulatory networks from experimental data
    Chen, T
    Filkov, V
    Skiena, SS
    PARALLEL COMPUTING, 2001, 27 (1-2) : 141 - 162
  • [43] The identifiability of gene regulatory networks: the role of observation data
    Huang, Xiao-Na
    Shi, Wen-Jia
    Zhou, Zuo
    Zhang, Xue-Jun
    JOURNAL OF BIOLOGICAL PHYSICS, 2022, 48 (01) : 93 - 110
  • [44] Inferring dynamic gene regulatory networks with low-order conditional independencies - an evaluation of the method
    Ajmal, Hamda B.
    Madden, Michael G.
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2020, 19 (4-6)
  • [45] Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods
    Qin, Jing
    Hu, Yaohua
    Xu, Feng
    Yalamanchili, Hari Krishna
    Wang, Junwen
    METHODS, 2014, 67 (03) : 294 - 303
  • [46] OscoNet: inferring oscillatory gene networks
    Cutillo, Luisa
    Boukouvalas, Alexis
    Marinopoulou, Elli
    Papalopulu, Nancy
    Rattray, Magnus
    BMC BIOINFORMATICS, 2020, 21 (Suppl 10)
  • [47] OscoNet: inferring oscillatory gene networks
    Luisa Cutillo
    Alexis Boukouvalas
    Elli Marinopoulou
    Nancy Papalopulu
    Magnus Rattray
    BMC Bioinformatics, 21
  • [48] Generalized framework for context-specific metabolic model extraction methods
    Estevez, Semidan Robaina
    Nikoloski, Zoran
    FRONTIERS IN PLANT SCIENCE, 2014, 5
  • [49] Using Bayesian Networks to Construct Gene Regulatory Networks from Microarray Data
    Kung, Tan Ai
    Mohamad, Mohd Saberi
    JURNAL TEKNOLOGI, 2012, 58
  • [50] Inferring Interaction Networks From Multi-Omics Data
    Hawe, Johann S.
    Theis, Fabian J.
    Heinig, Matthias
    FRONTIERS IN GENETICS, 2019, 10