Data integration for inferring context-specific gene regulatory networks

被引:6
|
作者
Baur, Brittany [1 ]
Shin, Junha [1 ]
Zhang, Shilu [1 ]
Roy, Sushmita [1 ,2 ]
机构
[1] Univ Wisconsin Madison, Wisconsin Inst Discovery, Madison, WI 53715 USA
[2] Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53715 USA
基金
新加坡国家研究基金会;
关键词
Gene regulatory networks; Gene regulation; Enhancer; Promoter; Single cell; Data integration; SEQ; CIRCUITS;
D O I
10.1016/j.coisb.2020.09.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcriptional regulatory networks control context-specific gene expression patterns and play important roles in normal and disease processes. Advances in genomics are rapidly increasing our ability to measure different components of the regulation machinery at the single-cell and bulk population level. An important challenge is to combine different types of regulatory genomic measurements to construct a more complete picture of gene regulatory networks across different disease, environmental, and developmental contexts. In this review, we focus on recent computational methods that integrate regulatory genomic datasets to infer context specificity and dynamics in regulatory networks.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 50 条
  • [11] Inferring cell-type-specific causal gene regulatory networks during human neurogenesis
    Nil Aygün
    Dan Liang
    Wesley L. Crouse
    Gregory R. Keele
    Michael I. Love
    Jason L. Stein
    Genome Biology, 24
  • [12] Algorithms for modeling global and context-specific functional relationship networks
    Zhu, Fan
    Panwar, Bharat
    Guan, Yuanfang
    BRIEFINGS IN BIOINFORMATICS, 2016, 17 (04) : 686 - 695
  • [13] Inferring cell-type-specific causal gene regulatory networks during human neurogenesis
    Aygun, Nil
    Liang, Dan
    Crouse, Wesley L.
    Keele, Gregory R.
    Love, Michael I.
    Stein, Jason L.
    GENOME BIOLOGY, 2023, 24 (01)
  • [14] Inferring Gene Regulatory Networks from Gene Expression Data by a Dynamic Bayesian Network-Based Model
    Chai, Lian En
    Mohamad, Mohd Saberi
    Deris, Safaai
    Chong, Chuii Khim
    Choon, Yee Wen
    Ibrahim, Zuwairie
    Omatu, Sigeru
    DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 2012, 151 : 379 - +
  • [15] Stability of Inferring Gene Regulatory Structure with Dynamic Bayesian Networks
    Rajapakse, Jagath C.
    Chaturvedi, Iti
    PATTERN RECOGNITION IN BIOINFORMATICS, 2011, 7036 : 237 - 246
  • [16] An algebra-based method for inferring gene regulatory networks
    Vera-Licona, Paola
    Jarrah, Abdul
    Garcia-Puente, Luis David
    McGee, John
    Laubenbacher, Reinhard
    BMC SYSTEMS BIOLOGY, 2014, 8
  • [17] Evolving Additive Tree Model for Inferring Gene Regulatory Networks
    Li, Guangpeng
    Chen, Yuehui
    Yang, Bin
    Zhao, Yaou
    Wang, Dong
    INTELLIGENT COMPUTING IN BIOINFORMATICS, 2014, 8590 : 141 - 147
  • [18] ENNET: inferring large gene regulatory networks from expression data using gradient boosting
    Slawek, Janusz
    Arodz, Tomasz
    BMC SYSTEMS BIOLOGY, 2013, 7
  • [19] Dynamic Bayesian networks in molecular plant science: inferring gene regulatory networks from multiple gene expression time series
    Dondelinger, Frank
    Husmeier, Dirk
    Lebre, Sophie
    EUPHYTICA, 2012, 183 (03) : 361 - 377
  • [20] Dynamic Bayesian networks in molecular plant science: inferring gene regulatory networks from multiple gene expression time series
    Frank Dondelinger
    Dirk Husmeier
    Sophie Lèbre
    Euphytica, 2012, 183 : 361 - 377