Data integration for inferring context-specific gene regulatory networks

被引:6
|
作者
Baur, Brittany [1 ]
Shin, Junha [1 ]
Zhang, Shilu [1 ]
Roy, Sushmita [1 ,2 ]
机构
[1] Univ Wisconsin Madison, Wisconsin Inst Discovery, Madison, WI 53715 USA
[2] Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53715 USA
基金
新加坡国家研究基金会;
关键词
Gene regulatory networks; Gene regulation; Enhancer; Promoter; Single cell; Data integration; SEQ; CIRCUITS;
D O I
10.1016/j.coisb.2020.09.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcriptional regulatory networks control context-specific gene expression patterns and play important roles in normal and disease processes. Advances in genomics are rapidly increasing our ability to measure different components of the regulation machinery at the single-cell and bulk population level. An important challenge is to combine different types of regulatory genomic measurements to construct a more complete picture of gene regulatory networks across different disease, environmental, and developmental contexts. In this review, we focus on recent computational methods that integrate regulatory genomic datasets to infer context specificity and dynamics in regulatory networks.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 50 条
  • [11] MOBILE pipeline enables identification of context-specific networks and regulatory mechanisms
    Erdem, Cemal
    Gross, Sean M. M.
    Heiser, Laura M. M.
    Birtwistle, Marc R. R.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [12] MOBILE pipeline enables identification of context-specific networks and regulatory mechanisms
    Cemal Erdem
    Sean M. Gross
    Laura M. Heiser
    Marc R. Birtwistle
    Nature Communications, 14
  • [13] Inferring gene regulatory networks from genetical genomics data
    Liu, Bing
    Hoeschele, Ina
    de la Fuente, Alberto
    Handbook of Research on Computational Methodologies in Gene Regulatory Networks, 2009, : 79 - 107
  • [14] Inferring gene regulatory networks by integrating static and dynamic data
    Ferrazzi, Fulvia
    Magni, Paolo
    Sacchi, Lucia
    Nuzzo, Angelo
    Petrovic, Uros
    Bellazzi, Riccardo
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2007, 76 : S462 - S475
  • [15] Inferring dynamic gene regulatory networks in cardiac differentiation through the integration of multi-dimensional data
    Wuming Gong
    Naoko Koyano-Nakagawa
    Tongbin Li
    Daniel J Garry
    BMC Bioinformatics, 16
  • [16] Inferring dynamic gene regulatory networks in cardiac differentiation through the integration of multi-dimensional data
    Gong, Wuming
    Koyano-Nakagawa, Naoko
    Li, Tongbin
    Garry, Daniel J.
    BMC BIOINFORMATICS, 2015, 16
  • [17] Context-specific independence in Bayesian networks
    Boutilier, C
    Friedman, N
    Goldszmidt, M
    Koller, D
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 1996, : 115 - 123
  • [18] Data integration pipeline for the reconstruction of context-specific genome-scale models
    Walakira, A.
    Rozman, D.
    Rezen, T.
    Mraz, M.
    Moskon, M.
    FEBS OPEN BIO, 2021, 11 : 358 - 359
  • [19] Inferring gene regulatory networks by ANOVA
    Kueffner, Robert
    Petri, Tobias
    Tavakkolkhah, Pegah
    Windhager, Lukas
    Zimmer, Ralf
    BIOINFORMATICS, 2012, 28 (10) : 1376 - 1382
  • [20] Inferring gene regulatory networks from asynchronous microarray data with AIRnet
    David Oviatt
    Mark Clement
    Quinn Snell
    Kenneth Sundberg
    Chun Wan J Lai
    Jared Allen
    Randall Roper
    BMC Genomics, 11